150 research outputs found

    A Formal Design of a Tool for Static Analysis of Upper Bounds on Object Calls in Java

    Full text link
    Abstract. This paper presents a formal design of a tool for statically establishing the upper bound on the number of executions of objects’ methods in a fragment of object-oriented code. The algorithm that our tool employs is a multi-pass interprocedural analysis consisting of data flow and region-based analyses. We describe the formalization of each of stage of the algorithm. This rigorous specification greatly aids the implementation of the tool by removing ambiguities of textual descrip-tions. There are many applications for information obtained through this method including reasoning about concurrent code, scheduling, code optimization, compositing services, etc.We concentrate on using upper bounds to instrument transactional code that uses a synchronization mechanism based on versioning, and therefore benefits from a priori knowledge about the usage of shared objects within each transaction. To this end we implement a precompiler for Java that analyzes transac-tions, and injects generated source code to initialize each transaction

    Evidence for long-term Gamma-ray and X-ray variability from the unidentified TeV source HESS J0632+057

    Full text link
    HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray sources which appear to be point-like within experimental resolution. It is possibly associated with the massive Be star MWC 148 and has been suggested to resemble known TeV binary systems like LS I +61 303 or LS 5039. HESS J0632+057 was observed by VERITAS for 31 hours in 2006, 2008 and 2009. During these observations, no significant signal in gamma rays with energies above 1 TeV was detected from the direction of HESS J0632+057. A flux upper limit corresponding to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data. The non-detection by VERITAS excludes with a probability of 99.993% that HESS J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations with Swift XRT reveal a factor of 1.8+-0.4 higher flux in the 1-10 keV range than earlier X-ray observations of HESS J0632+057. The variability in the gamma-ray and X-ray fluxes supports interpretation of the ob ject as a gamma-ray emitting binary.Comment: 8 pages, 3 figures, Accepted for publication in The Astrophysical Journa

    A connection between star formation activity and cosmic rays in the starburst galaxy M 82

    Full text link
    Although Galactic cosmic rays (protons and nuclei) are widely believed to be dominantly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery [1]. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size, more than 50 times the diameter of similar Galactic regions, uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density [2]. The cosmic rays produced in the formation, life, and death of their massive stars are expected to eventually produce diffuse gamma-ray emission via their interactions with interstellar gas and radiation. M 82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in gamma rays [3, 4]. Here we report the detection of >700 GeV gamma rays from M 82. From these data we determine a cosmic-ray density of 250 eV cm-3 in the starburst core of M 82, or about 500 times the average Galactic density. This result strongly supports that cosmic-ray acceleration is tied to star formation activity, and that supernovae and massive-star winds are the dominant accelerators.Comment: 18 pages, 4 figures; published in Nature; Version is prior to Nature's in-house style editing (differences are minimal

    Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS

    Full text link
    TeV J2032+4130 was the first unidentified source discovered at very high energies (VHE; E >> 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discovery, intensive observational campaigns have been carried out in all wavelengths in order to understand the nature of the object, which have met with limited success. We report here on a deep observation of TeV J2032+4130, based on 48.2 hours of data taken from 2009 to 2012 by the VERITAS (Very Energetic Radiation Imaging Telescope Array System) experiment. The source is detected at 8.7 standard deviations (σ\sigma) and is found to be extended and asymmetric with a width of 9.5^{\prime}±\pm1.2^{\prime} along the major axis and 4.0^{\prime}±\pm0.5^{\prime} along the minor axis. The spectrum is well described by a differential power law with an index of 2.10 ±\pm 0.14stat_{stat} ±\pm 0.21sys_{sys} and a normalization of (9.5 ±\pm 1.6stat_{stat} ±\pm 2.2sys_{sys}) ×\times 1013^{-13}TeV1^{-1} cm2^{-2} s1^{-1} at 1 TeV. We interpret these results in the context of multiwavelength scenarios which particularly favor the pulsar wind nebula (PWN) interpretation

    Discovery of Very High-Energy Gamma-Ray Radiation from the BL Lac 1ES 0806+524

    Get PDF
    The high-frequency-peaked BL-Lacertae object \objectname{1ES 0806+524}, at redshift z=0.138, was observed in the very-high-energy (VHE) gamma-ray regime by VERITAS between November 2006 and April 2008. These data encompass the two-, and three-telescope commissioning phases, as well as observations with the full four-telescope array. \objectname{1ES 0806+524} is detected with a statistical significance of 6.3 standard deviations from 245 excess events. Little or no measurable variability on monthly time scales is found. The photon spectrum for the period November 2007 to April 2008 can be characterized by a power law with photon index 3.6±1.0stat±0.3sys3.6 \pm 1.0_{\mathrm{stat}} \pm 0.3_{\mathrm{sys}} between \sim300 GeV and \sim700 GeV. The integral flux above 300 GeV is (2.2±0.5stat±0.4sys)×1012cm2s1(2.2\pm0.5_{\mathrm{stat}}\pm0.4_{\mathrm{sys}})\times10^{-12}\:\mathrm{cm}^{2}\:\mathrm{s}^{-1} which corresponds to 1.8% of the Crab Nebula flux. Non contemporaneous multiwavelength observations are combined with the VHE data to produce a broadband spectral energy distribution that can be reasonably described using a synchrotron-self Compton model.Comment: 14 pages, 4 figures, accepted to APJ

    VERITAS Upper Limit on the VHE Emission from the Radio Galaxy NGC 1275

    Full text link
    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei (AGN) with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope (LAT) result.Comment: Accepted for publication in ApJ Letter

    Detection of Extended VHE Gamma Ray Emission from G106.3+2.7 with VERITAS

    Get PDF
    We report the detection of very-high-energy (VHE) gamma-ray emission from supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission overlapping the elongated radio SNR. The 7.3 sigma (pre-trials) detection has a full angular extent of roughly 0.6deg by 0.4deg. Most notably, the centroid of the VHE emission is centered near the peak of the coincident 12CO (J = 1-0) emission, 0.4deg away from the pulsar PSR J2229+6114, situated at the northern end of the SNR. Evidently the current-epoch particles from the pulsar wind nebula are not participating in the gamma-ray production. The VHE energy spectrum measured with VERITAS is well characterized by a power law dN/dE = N_0(E/3 TeV)^{-G} with a differential index of G = 2.29 +/- 0.33stat +/- 0.30sys and a flux of N_0 = (1.15 +/- 0.27stat +/- 0.35sys)x 10^{-13} cm^{-2} s^{-1} TeV^{-1}. The integral flux above 1 TeV corresponds to ~5 percent of the steady Crab Nebula emission above the same energy. We describe the observations and analysis of the object and briefly discuss the implications of the detection in a multiwavelength context.Comment: 5 pages, 2 figure

    VERITAS Upper Limit on the VHE Emission from the Radio Galaxy NGC 1275

    Full text link
    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei (AGN) with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope (LAT) result.Comment: Accepted for publication in ApJ Letter

    VERITAS Search for VHE Gamma-ray Emission from Dwarf Spheroidal Galaxies

    Get PDF
    Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bootes 1, and Willman 1 conducted by VERITAS. These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of ~20 hours. The 95% confidence upper limits on the integral gamma-ray flux are in the range 0.4-2.2x10^-12 photons cm^-2s^-1. We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs. The limits are obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and are approximately three orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower the limits.Comment: 21 pages, 2 figures, updated to reflect version published in ApJ. NOTE: M.D. Wood added as autho
    corecore