49 research outputs found

    Stable Isotope Analysis Can Potentially Identify Completely-Digested Bloodmeals in Mosquitoes

    Get PDF
    Background: Vertebrate bloodfeeding is a critical component of a mosquito’s ability to transmit pathogens that cause diseases such as malaria, dengue fever and viral encephalitis. Due to degradation by the digestive process, current methods to identify mosquito bloodmeal sources are only useful for approximately 36 hours post-feeding. A critical need exists for technologies to extend this window and gain a more complete picture of mosquito feeding behavior for epidemiological studies. Stable isotopes are useful for investigating organism feeding behavior because the isotopic ratio of an organism’s tissues reflects that of the material it ingests. Methodology/Principal Findings: Proof-of-principle data indicates that after bloodfeeding, Aedes albopictus mosquitoes acquire diagnostic Carbon and Nitrogen stable isotope profiles from their vertebrate hosts that can be accurately identified one week post-feeding, approximately 4 days after the entire bloodmeal has been digested. Total C/N ratio served as a biomarker marker for bloodfeeding (P,0.02), while dN was the most informative variable which could distinguish between unfed, chicken-fed and human-fed mosquitoes (P,0.01). By plotting C/N vs. dN, all feeding treatments could be identified in a double-blind analysis. Conclusions/Significance: These proof-of-principle experiments indicate that analysis of stable isotopes can be used to distinguish bloodfed from unfed mosquitoes, and also distinguish between different vertebrate bloodmeal sources eve

    Tracking the Feeding Patterns of Tsetse Flies (Glossina Genus) by Analysis of Bloodmeals Using Mitochondrial Cytochromes Genes

    Get PDF
    Tsetse flies are notoriously difficult to observe in nature, particularly when populations densities are low. It is therefore difficult to observe them on their hosts in nature; hence their vertebrate species can very often only be determined indirectly by analysis of their gut contents. This knowledge is a critical component of the information on which control tactics can be developed. The objective of this study was to determine the sources of tsetse bloodmeals, hence investigate their feeding preferences. We used mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) gene sequences for identification of tsetse fly blood meals, in order to provide a foundation for rational decisions to guide control of trypanosomiasis, and their vectors. Glossina swynnertoni were sampled from Serengeti (Tanzania) and G. pallidipes from Kenya (Nguruman and Busia), and Uganda. Sequences were used to query public databases, and the percentage identities obtained used to identify hosts. An initial assay showed that the feeds were from single sources. Hosts identified from blood fed flies collected in Serengeti ecosystem, included buffaloes (25/40), giraffes (8/40), warthogs (3/40), elephants (3/40) and one spotted hyena. In Nguruman, where G. pallidipes flies were analyzed, the feeds were from elephants (6/13) and warthogs (5/13), while buffaloes and baboons accounted for one bloodmeal each. Only cattle blood was detected in flies caught in Busia and Uganda. Out of four flies tested in Mbita Point, Suba District in western Kenya, one had fed on cattle, the other three on the Nile monitor lizard. These results demonstrate that cattle will form an integral part of a control strategy for trypanosomiasis in Busia and Uganda, while different approaches are required for Serengeti and Nguruman ecosystems, where wildlife abound and are the major component of the tsetse fly food source

    Host Reproductive Phenology Drives Seasonal Patterns of Host Use in Mosquitoes

    Get PDF
    Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1) the shift is driven by changes in host abundance, or (2) the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron) and ectothermic (frogs) hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts), quiescent young (avian and mammalian hosts), and mate-seeking males (frogs)

    Why are anopheline mosquitoes not present in the Seychelles?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Species of anopheline mosquitoes are largely distributed over emerged lands around the world and, within the tropics, few areas are without these insects, which are vectors of malaria parasites. Among the exceptions is the Seychelles archipelago in the western Indian Ocean. However, in the Aldabra island group, located in the extreme western portion of the archipelago, <it>Anopheles gambiae s.l. </it>was introduced, leading to massive proliferation and then elimination, with the most recent autochthonous malaria cases recorded in 1931.</p> <p>Methods</p> <p>In order to re-examine the absence of anopheline mosquitoes in the Seychelles, an entomological field survey was conducted in December 2008 at 17 sites on four granitic islands, including Mahé and Praslin, and ten sites on coralline atolls in the extreme west, including Aldabra.</p> <p>Results</p> <p>No evidence of larval or adult anophelines was found at the surveyed sites, which supports their absence in the Seychelles.</p> <p>Conclusions</p> <p>In the granitic islands of the Seychelles, the climate is favourable for anophelines. However, these islands are protected by their remoteness and prevailing seasonal winds. In addition, stagnant freshwater, required in anopheline larval development, is relatively uncommon on the granitic islands because of the steep slopes. In the southwestern atolls (Aldabra and Providence-Farquhar groups), the presence of a long dry season of up to nine months and the total absence of permanent natural freshwater prevents the breeding of anophelines and their successful colonization. The Seychelles does not have any native land mammals and like in other parts of the world (Antarctica, Iceland, New Caledonia, Central Pacific islands) their absence is associated with the lack of anophelines. This suggests an obligatory relationship for anophelines to feed on terrestrial mammals, without alternative for blood-feeding sources, such as bats, birds and reptiles.</p

    The abundance and host-seeking behavior of culicine species (Diptera: Culicidae) and Anopheles sinensis in Yongcheng city, people's Republic of China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control. Culicine species are the primary vectors of Japanese encephalitis (JE) virus and filariasis in China. <it>Anopheles sinensis </it>plays a major role in the maintenance of <it>Plasmodium vivax </it>malaria transmission in China. The goal of this study was to compare the abundance and host-seeking behavior of culicine species and <it>An. sinensis </it>in Yongcheng city, a representative region of <it>P. vivax </it>malaria. Specifically, we wished to determine the relative attractiveness of different animal baits versus human bait to culicine species and <it>An. sinensis</it>.</p> <p>Results</p> <p><it>Culex tritaeniorhynchus </it>was the most prevalent mosquito species and <it>An. sinensis </it>was the sole potential vector of <it>P. vivax </it>malaria in Yongcheng city. There were significant differences (P < 0.01) in the abundance of both <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus </it>collected in distinct baited traps. The relative attractiveness of animal versus human bait was similar towards both <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus</it>. The ranking derived from the mean number of mosquitoes per bait indicated that pigs, goats and calves frequently attracted more mosquitoes than the other hosts tested (dogs, humans, and chickens). These trends were similar across all capture nights at three distinct villages. The human blood index (HBI) of female <it>An. sinensis </it>was 2.94% when computed with mixed meals while 3.70% computed with only the single meal. 19:00~21:00 was the primary peak of host-seeking female <it>An. sinensis </it>while 4:00~5:00 was the smaller peak at night. There was significant correlation between the density of female <it>An. sinensis </it>and the average relative humidity (P < 0.05) in Wangshanzhuang village.</p> <p>Conclusions</p> <p>Pigs, goats and calves were more attractive to <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus </it>than dogs, humans, and chickens. Female <it>An. sinensis </it>host-seeking activity mainly occurred from 19:00 to 21:00. Thus, we propose that future vector control against <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus </it>in the areas along the Huang-Huai River of central China should target the interface of human activity with domestic animals and adopt before human hosts go to bed at night.</p
    corecore