19 research outputs found

    Co-Regulations of Spartina alterniflora Invasion and Exogenous Nitrogen Loading on Soil N2O Efflux in Subtropical Mangrove Mesocosms

    Get PDF
    We thank Zhonglei Wang, Cunxin Ning, Hui Chen, Qian Huang, Fang Liu and Jian Zhou for their assistance with the greenhouse experiments and gas sampling. We are also grateful to Weimin Song, Rashid Rafique, Junyi Liang, Zheng Shi and Jianyang Xia for editing the manuscript.Both plant invasion and nitrogen (N) enrichment should have significant impact on mangrove ecosystems in coastal regions around the world. However, how N2O efflux in mangrove wetlands responds to these environmental changes has not been well studied. Here, we conducted a mesocosm experiment with native mangrove species Kandelia obovata, invasive salt marsh species Spartina alterniflora, and their mixture in a simulated tide rotation system with or without nitrogen addition. In the treatments without N addition, the N2O effluxes were relatively low and there were no significant variations among the three vegetation types. A pulse loading of exogenous ammonium nitrogen increased N2O effluxes from soils but the stimulatory effect gradually diminished over time, suggesting that frequent measurements are necessary to accurately understand the behavior of N-induced response of N2O emissions. With the N addition, the N2O effluxes from the invasive S. alterniflora were lower than that from native K. obovata mesocosms. This result may be attributed to higher growth of S. alterniflora consuming most of the available nitrogen in soils, and thus inhibiting N2O production. We concluded that N loading significantly increased N2O effluxes, while the invasion of S. alterniflora reduced N2O effluxes response to N loading in this simulated mangrove ecosystem. Thus, both plant invasion and excessive N loading can co-regulate soil N2O emissions from mangrove wetlands, which should be considered when projecting future N2O effluxes from this type of coastal wetland.Yeshttp://www.plosone.org/static/editorial#pee

    Interactions between the stimulated hypothalaamic-pituitary-adrenal axis and leptin in humans

    No full text
    Leptin, produced by adipocytes, has homeostatic effects on body fat mass through inhibition of appetite and stimulation of the sympathetic nervous system. Several studies have reported that high-dose exogenous glucocorticoids increase circulating leptin concentrations in humans. Conversely, leptin has inhibitory effects on the hypothalamic-pituitary-adrenal (HPA) axis, both at the hypothalamic and adrenal levels. We hypothesized that acute hypercortisolism, in the physiological range, may not alter leptin secretion. Four stimuli of the HPA axis were administered to eight healthy male volunteers in a placebo-controlled study. On separate afternoons, in a randomised order, fasting subjects received i.v. injections of saline, naloxone (125 μg/kg); vasopressin (0.0143 IU/kg); naloxone and vasopressin in combination; or insulin (0.15 U/kg; a dose sufficient to induce hypoglycaemia). Plasma concentrations of adrenocorticotrophic hormone (ACTH), cortisol and leptin were measured before and for 120 min after the injection. The cortisol secretory response was greatest after insulin-hypoglycaemia, this response was significantly greater than that following naloxone, naloxone/vasopressin, or vasopressin alone. Despite the cortisol release, leptin concentrations were not increased after any stimulus. Insulin-hypoglycaemia was associated with a decrease in leptin concentration at 60 and 90 min, while naloxone did not alter leptin concentrations. However, basal leptin concentrations were positively correlated with integrated ACTH and cortisol responses to naloxone, but did not correlate with ACTH or cortisol responses to the other stimuli. Thus acute elevations of plasma cortisol, in the physiological range, do not appear to influence plasma leptin concentrations. The fall in plasma leptin concentration after insulin-induced hypoglycaemia may reflect catecholamine secretion after this stimulus
    corecore