625 research outputs found
Superconducting Magnets for a Final Focus Upgrade of ATF2
Original publication available at http://www.jacow.org/International audienceThe Accelerator Test Facility 2 (ATF2) at KEK is a scaled version of the final focus (FF) design proposed for a future linear collider (LC). A primary ATF2 goal is to experimentally verify the FF technology needed to obtain very small, stable beam spots at an LC interaction point [1]. Initially the ATF2 FF is made using conventional (warm) quadrupole and sextupole magnets. We intend to upgrade the ATF2 FF by replacing conventional magnets with new superconducting ones that use the same technology proposed for the International Linear Collider (ILC) baseline FF magnets [2]. With this upgrade we can investigate smaller interaction point beta-functions and study superconducting magnet vibration stability in an accelerator environment. Our ATF2 magnet cryostat design incorporates features to facilitate monitoring of the cold mass movement via interferometric techniques. The status and future plans for the ATF2 superconducting magnet upgrade are reported here
Improved Measurement of the Positive Muon Anomalous Magnetic Moment
A new measurement of the positive muon's anomalous magnetic moment has been
made at the Brookhaven Alternating Gradient Synchrotron using the direct
injection of polarized muons into the superferric storage ring. The angular
frequency difference omega_{a} between the angular spin precession frequency
omega_{s} and the angular orbital frequency omega_{c} is measured as well as
the free proton NMR frequency omega_{p}. These determine
R = omega_{a} / omega_{p} = 3.707~201(19) times 10^{-3}. With mu_{mu} /
mu_{p} = 3.183~345~39(10) this gives a_{mu^+} = 11~659~191(59) times 10^{-10}
(pm 5 ppm), in good agreement with the previous CERN and BNL measurements for
mu^+ and mu^-, and with the standard model prediction.Comment: 4 pages, 4 figures. accepted for publication in Phys. Rev. D62 Rapid
Communication
Search for Lorentz and CPT Violation Effects in Muon Spin Precession
The spin precession frequency of muons stored in the storage ring has
been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT
violation signatures were searched for: a nonzero
(=); and a sidereal variation of
. No significant effect is found, and the following
limits on the standard-model extension parameters are obtained: GeV; GeV; and the 95% confidence level limits
GeV and
GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to
answer the referees suggestion
An Improved Limit on the Muon Electric Dipole Moment
Three independent searches for an electric dipole moment (EDM) of the
positive and negative muons have been performed, using spin precession data
from the muon g-2 storage ring at Brookhaven National Laboratory. Details on
the experimental apparatus and the three analyses are presented. Since the
individual results on the positive and negative muon, as well as the combined
result, d=-0.1(0.9)E-19 e-cm, are all consistent with zero, we set a new muon
EDM limit, |d| < 1.9E-19 e-cm (95% C.L.). This represents a factor of 5
improvement over the previous best limit on the muon EDM.Comment: 19 pages, 15 figures, 7 table
Search for Lorentz and CPT Violation Effects in Muon Spin Precession
The spin precession frequency of muons stored in the storage ring has
been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT
violation signatures were searched for: a nonzero
(=); and a sidereal variation of
. No significant effect is found, and the following
limits on the standard-model extension parameters are obtained: GeV; GeV; and the 95% confidence level limits
GeV and
GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to
answer the referees suggestion
Observation of the Hadronic Transitions Chi_{b 1,2}(2P) -> omega Upsilon(1S)
The CLEO Collaboration has observed the first hadronic transition among
bottomonium (b bbar) states other than the dipion transitions among vector
states, Upsilon(nS) -> pi pi Upsilon(mS). In our study of Upsilon(3S) decays,
we find a significant signal for Upsilon(3S) -> gamma omega Upsilon(1S) that is
consistent with radiative decays Upsilon(3S) -> gamma chi_{b 1,2}(2P), followed
by chi_{b 1,2} -> omega Upsilon(1S). The branching ratios we obtain are
Br(chi_{b1} -> omega Upsilon(1S) = 1.63 (+0.35 -0.31) (+0.16 -0.15) % and
Br(chi_{b2} -> omega Upsilon(1S) = 1.10 (+0.32 -0.28) (+0.11 - 0.10)%, in which
the first error is statistical and the second is systematic.Comment: submitted to XXI Intern'l Symp on Lepton and Photon Interact'ns at
High Energies, August 2003, Fermila
Moments of the B Meson Inclusive Semileptonic Decay Rate using Neutrino Reconstruction
We present a measurement of the composition of B meson inclusive semileptonic
decays using 9.4 fb^-1 of e^+e^- data taken with the CLEO detector at the
Upsilon(4S) resonance. In addition to measuring the charged lepton kinematics,
the neutrino four-vector is inferred using the hermiticity of the detector. We
perform a maximum likelihood fit over the full three-dimensional differential
decay distribution for the fractional contributions from the B -> X_c l nu
processes with X_c = D, D*, D**, and nonresonant X_c, and the process B -> X_u
l nu. From the fit results we extract the first and second moments of the M_X^2
and q^2 distributions with minimum lepton-energy requirements of 1.0 GeV and
1.5 GeV. We find = 0.456 +- 0.014 +- 0.045 +- 0.109
(GeV/c^2)^2 with a minimum lepton energy of 1.0 GeV and =
0.293 +- 0.012 +- 0.033 +- 0.048 (GeV/c^2)^2 with minimum lepton energy of 1.5
GeV. The uncertainties are from statistics, detector systematic effects, and
model dependence, respectively. As a test of the HQET and OPE calculations, the
results for the M^X_c moment as a function of the minimum lepton energy
requirement are compared to the predictions.Comment: 26 pages postscript, als available through
http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with
following preprint hep-ex/0403053
The Muon Anomalous Magnetic Moment and the Standard Model
The muon anomalous magnetic moment measurement, when compared with theory,
can be used to test many extensions to the standard model. The most recent
measurement made by the Brookhaven E821 Collaboration reduces the uncertainty
on the world average of a_mu to 0.7 ppm, comparable in precision to theory.
This paper describes the experiment and the current theoretical efforts to
establish a correct standard model reference value for the muon anomaly.Comment: Plenary Talk; PANIC'02 XVI Particles and Nuclear International
Conference, Osaka, Japan; Sept. 30 - Oct. 4, 2002; Report describes the
published 0.7 ppm result and updates the theory statu
Improved Measurement of the Form Factors in the Decay Lambda_c^+ --> Lambda e^+ nu_e
Using the CLEO detector at the Cornell Electron Storage Ring, we have studied
the distribution of kinematic variables in the decay Lambda_c^+ -> Lambda e^+
nu_e. By performing a four-dimensional maximum likelihood fit, we determine the
form factor ratio, R = f_2/f_1 = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole
mass, M_{pole} = (2.21 +/- 0.08(stat) +/- 0.14(syst)) GeV/c^2, and the decay
asymmetry parameter of the Lambda_c, alpha_{Lambda_c} = -0.86 +/- 0.03(stat)
+/- 0.02(syst), for = 0.67 (GeV/c^2)^2. We compare the angular
distributions of the Lambda_c^+ and Lambda_c^- and find no evidence for
CP-violation: A_{Lambda_c} = (alpha_{Lambda_c^+} + alpha_{Lambda_c^-})/
(alpha_{Lambda_c^+} - alpha_{Lambda_c^-}) = 0.00 +/- 0.03(stat) +/- 0.01(syst)
+/- 0.02, where the third error is from the uncertainty in the world average of
the CP-violating parameter, A_{Lambda}, for Lambda -> p pi^-.Comment: 8 pages postscript,also available through
http://www.lns.cornell.edu/public/CLNS/2004/, submitted to PR
- …