9,434 research outputs found
Electron Interactions and Scaling Relations for Optical Excitations in Carbon Nanotubes
Recent fluorescence spectroscopy experiments on single wall carbon nanotubes
reveal substantial deviations of observed absorption and emission energies from
predictions of noninteracting models of the electronic structure. Nonetheless,
the data for nearly armchair nanotubes obey a nonlinear scaling relation as a
function the tube radius . We show that these effects can be understood in a
theory of large radius tubes, derived from the theory of two dimensional
graphene where the coulomb interaction leads to a logarithmic correction to the
electronic self energy and marginal Fermi liquid behavior. Interactions on
length scales larger than the tube circumference lead to strong self energy and
excitonic effects that compete and nearly cancel so that the observed optical
transitions are dominated by the graphene self energy effects.Comment: 4 page
Quantum Hall line junction with impurities as a multi-slit Luttinger liquid interferometer
We report on quantum interference between a pair of counterpropagating
quantum Hall edge states that are separated by a high quality tunnel barrier.
Observed Aharonov-Bohm oscillations are analyzed in terms of resonant tunneling
between coupled Luttinger liquids that creates bound electronic states between
pairs of tunnel centers that act like interference slits. We place a lower
bound in the range of 20-40 m for the phase coherence length and directly
confirm the extended phase coherence of quantum Hall edge states.Comment: 4 pages, 3 figures, 1 tabl
High-Field Electrical Transport in Single-Wall Carbon Nanotubes
Using low-resistance electrical contacts, we have measured the intrinsic
high-field transport properties of metallic single-wall carbon nanotubes.
Individual nanotubes appear to be able to carry currents with a density
exceeding 10^9 A/cm^2. As the bias voltage is increased, the conductance drops
dramatically due to scattering of electrons. We show that the current-voltage
characteristics can be explained by considering optical or zone-boundary phonon
emission as the dominant scattering mechanism at high field.Comment: 4 pages, 3 eps figure
The Fractional Quantum Hall effect in an array of quantum wires
We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model
of coupled quantum wires in a perpendicular magnetic field. At commensurate
values of the magnetic field, the system can develop instabilities to
appropriate inter-wire electron hopping processes that drive the system into a
variety of QH states. Some of the QH states are not included in the
Haldane-Halperin hierarchy. In addition, we find operators allowed at any field
that lead to novel crystals of Laughlin quasiparticles. We demonstrate that any
QH state is the groundstate of a Hamiltonian that we explicitly construct.Comment: Revtex, 4 pages, 2 figure
Higgs Boson Decays to tau-pairs in the s-channel at a Muon Collider
We study the observability of the \tautau decay mode of a Higgs boson
produced in the -channel at a muon collider. We find that the spin
correlations of the \tautau in decays
are discriminative between the Higgs boson signal and the Standard Model
background. Observation of the predicted distinctive distribution can confirm
the spin-0 nature of the Higgs resonance. The relative coupling strength of the
Higgs boson to and can also be experimentally determined.Comment: to appear in PL
Reorientation of the human body by means of arm motions
Arm motion effects on orientation of human body during free fall, and FORTRAN 4 program for solving equation
Shot Noise in Anyonic Mach-Zehnder Interferometer
We show how shot noise in an electronic Mach-Zehnder interferometer in the
fractional quantum Hall regime probes the charge and statistics of quantum Hall
quasiparticles. The dependence of the noise on the magnetic flux through the
interferometer allows for a simple way to distinguish Abelian from non-Abelian
quasiparticle statistics. In the Abelian case, the Fano factor (in units of the
electron charge) is always lower than unity. In the non-Abelian case, the
maximal Fano factor as a function of the magnetic flux exceeds one.Comment: references adde
- …