531 research outputs found

    Neutrino Interactions in the Outflow from Gamma-Ray Burst Accretion Disks

    Full text link
    We examine the composition of matter as it flows away from gamma ray burst accretion disks, in order to determine what sort of nucleosynthesis may occur. Since there is a large flux of neutrinos leaving the surface of the disk, the electron fraction of the outflowing material will change due to charged current neutrino interactions. We calculate the electron fraction in the wind using detailed neutrino fluxes from every point on the disk and study a range of trajectories and outflow conditions for several different accretion disk models. We find that low electron fractions, conducive to making r-process elements, only appear in outflows from disks with high accretion rates that have a significant region both of trapped neutrinos and antineutrinos. Disks with lower accretion rates that have only a significant region of trapped neutrinos can have outflows with very high electron fractions, whereas the lowest accretion rate disks with little trapping have outflow electrons fractions of closer to one half.Comment: 11 pages, 10 figure

    Nucleosynthesis of Nickel-56 from Gamma-Ray Burst Accretion Disks

    Full text link
    We examine the prospects for producing Nickel-56 from black hole accretion disks, by examining a range of steady state disk models. We focus on relatively slowly accreting disks in the range of 0.05 - 1 solar masses per second, as are thought to be appropriate for the central engines of long-duration gamma-ray bursts. We find that significant amounts of Nickel-56 are produced over a wide range of parameter space. We discuss the influence of entropy, outflow timescale and initial disk position on mass fraction of Nickel-56 which is produced. We keep careful track of the weak interactions to ensure reliable calculations of the electron fraction, and discuss the role of the neutrinos.Comment: 10 pages, 9 figure

    On the Contribution of Gamma Ray Bursts to the Galactic Inventory of Some Intermediate Mass Nuclei

    Full text link
    Light curves from a growing number of Gamma Ray Bursts (GRBs) indicate that GRBs copiously produce radioactive Ni moving outward at fractions of the speed of light. We calculate nuclear abundances of elements accompanying the outflowing Ni under the assumption that this Ni originates from a wind blown off of a viscous accretion disk. We also show that GRB's likely contribute appreciably to the galactic inventory of 42Ca, 45Sc, 46Ti, 49Ti, 63Cu, and may be a principal site for the production of 64Zn.Comment: 11 pages, 1 figur

    Neutrinos and the synthesis of heavy elements: the role of gravity

    Full text link
    The synthesis of heavy elements in the Universe presents several challenges. From one side the astrophysical site is still undetermined and on other hand the input from nuclear physics requires the knowledge of properties of exotic nuclei, some of them perhaps accessible in ion beam facilities. Black hole accretion disks have been proposed as possible r-process sites. Analogously to Supernovae these objects emit huge amounts of neutrinos. We discuss the neutrino emission from black hole accretion disks. In particular we show the influence that the black hole strong gravitational field has on changing the electron fraction relevant to the synthesis of elements.Comment: 5 pages, 5 figures, Invited talk at the 15th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15), to appear in EPJ Web of Conference

    Nucleosynthesis in the Outflow from Gamma Ray Burst Accretion Disks

    Full text link
    We examine the nucleosynthesis products that are produced in the outflow from rapidly accreting disks. We find that the type of element synthesis varies dramatically with the degree of neutrino trapping in the disk and therefore the accretion rate of the disk. Disks with relatively high accretion rates such as 10 M_solar/s can produce very neutron rich nuclei that are found in the r process. Disks with more moderate accretion rates can produce copious amounts of Nickel as well as the light elements such as Lithium and Boron. Disks with lower accretion rates such as 0.1 M_solar/s produce large amounts of Nickel as well as some unusual nuclei such as Ti-49, Sc-45, Zn-64, and Mo-92. This wide array of potential nucleosynthesis products is due to the varying influence of electron neutrinos and antineutrinos emitted from the disk on the neutron-to-proton ratio in the outflow. We use a parameterization for the outflow and discuss our results in terms of entropy and outflow acceleration.Comment: 12 pages, 12 figures; submitted to Ap
    • …
    corecore