6,223 research outputs found
Water Hauling and Girls' School Attendance Some New Evidence From Ghana
In large parts of the world, a lack of home tap water burdens households as the water must be brought to the house from outside, at great expense in terms of effort and time. This paper studies how such costs affect girls' schooling in Ghana, with an analysis based on four rounds of the Demographic and Health Surveys
Pupil mobility, attainment and progress in secondary school
This paper is the second of two articles arising from a study of the association between pupil mobility and attainment in national tests and examinations in an inner London borough. The first article (Strand & Demie, 2006) examined the association of pupil mobility with attainment and progress during primary school. It concluded that pupil mobility had little impact on performance in national tests at age 11, once pupils’ prior attainment at age 7 and other pupil background factors such as age, sex, special educational needs, stage of fluency in English and socio-economic disadvantage were taken into account. The present article reports the results for secondary schools (age 11-16). The results indicate that pupil mobility continues to have a significant negative association with performance in public examinations at age 16, even after including statistical controls for prior attainment at age 11 and other pupil background factors. Possible reasons for the contrasting results across school phases are explored. The implications for policy and further research are discussed
Measuring and modeling optical diffraction from subwavelength features
We describe a technique for studying scattering from subwavelength features. A simple scatterometer was developed to measure the scattering from the single-submicrometer, subwavelength features generated with a focused ion beam system. A model that can describe diffraction from subwavelength features with arbitrary profiles is also presented and shown to agree quite well with the experimental measurements. The model is used to demonstrate ways in which the aspect ratios of subwavelength ridges and trenches can be obtained from scattering data and how ridges can be distinguished from trenches over a wide range of aspect ratios. We show that some earlier results of studies on distinguishing pits from particles do not extend to low-aspect-ratio features
Spin injection from the Heusler alloy Co_2MnGe into Al_0.1Ga_0.9As/GaAs heterostructures
Electrical spin injection from the Heusler alloy Co_2MnGe into a p-i-n
Al_0.1Ga_0.9As/GaAs light emitting diode is demonstrated. A maximum
steady-state spin polarization of approximately 13% at 2 K is measured in two
types of heterostructures. The injected spin polarization at 2 K is calculated
to be 27% based on a calibration of the spin detector using Hanle effect
measurements. Although the dependence on electrical bias conditions is
qualitatively similar to Fe-based spin injection devices of the same design,
the spin polarization injected from Co_2MnGe decays more rapidly with
increasing temperature.Comment: 8 pages, 4 figure
Identifying Structural Variation in Haploid Microbial Genomes from Short-Read Resequencing Data Using Breseq
Mutations that alter chromosomal structure play critical roles in evolution and disease, including in the origin of new lifestyles and pathogenic traits in microbes. Large-scale rearrangements in genomes are often mediated by recombination events involving new or existing copies of mobile genetic elements, recently duplicated genes, or other repetitive sequences. Most current software programs for predicting structural variation from short-read DNA resequencing data are intended primarily for use on human genomes. They typically disregard information in reads mapping to repeat sequences, and significant post-processing and manual examination of their output is often required to rule out false-positive predictions and precisely describe mutational events. Results: We have implemented an algorithm for identifying structural variation from DNA resequencing data as part of the breseq computational pipeline for predicting mutations in haploid microbial genomes. Our method evaluates the support for new sequence junctions present in a clonal sample from split-read alignments to a reference genome, including matches to repeat sequences. Then, it uses a statistical model of read coverage evenness to accept or reject these predictions. Finally, breseq combines predictions of new junctions and deleted chromosomal regions to output biologically relevant descriptions of mutations and their effects on genes. We demonstrate the performance of breseq on simulated Escherichia coli genomes with deletions generating unique breakpoint sequences, new insertions of mobile genetic elements, and deletions mediated by mobile elements. Then, we reanalyze data from an E. coli K-12 mutation accumulation evolution experiment in which structural variation was not previously identified. Transposon insertions and large-scale chromosomal changes detected by breseq account for similar to 25% of spontaneous mutations in this strain. In all cases, we find that breseq is able to reliably predict structural variation with modest read-depth coverage of the reference genome (>40-fold). Conclusions: Using breseq to predict structural variation should be useful for studies of microbial epidemiology, experimental evolution, synthetic biology, and genetics when a reference genome for a closely related strain is available. In these cases, breseq can discover mutations that may be responsible for important or unintended changes in genomes that might otherwise go undetected.U.S. National Institutes of Health R00-GM087550U.S. National Science Foundation (NSF) DEB-0515729NSF BEACON Center for the Study of Evolution in Action DBI-0939454Cancer Prevention & Research Institute of Texas (CPRIT) RP130124University of Texas at Austin startup fundsUniversity of Texas at AustinCPRIT Cancer Research TraineeshipMolecular Bioscience
Spin Injection and Relaxation in Ferromagnet-Semiconductor Heterostructures
We present a complete description of spin injection and detection in
Fe/Al_xGa_{1-x}As/GaAs heterostructures for temperatures from 2 to 295 K.
Measurements of the steady-state spin polarization in the semiconductor
indicate three temperature regimes for spin transport and relaxation. At
temperatures below 70 K, spin-polarized electrons injected into quantum well
structures form excitons, and the spin polarization in the quantum well depends
strongly on the electrical bias conditions. At intermediate temperatures, the
spin polarization is determined primarily by the spin relaxation rate for free
electrons in the quantum well. This process is slow relative to the excitonic
spin relaxation rate at lower temperatures and is responsible for a broad
maximum in the spin polarization between 100 and 200 K. The spin injection
efficiency of the Fe/Al_xGa_{1-x}As Schottky barrier decreases at higher
temperatures, although a steady-state spin polarization of at least 6 % is
observed at 295 K.Comment: 3 Figures Submitted to Phys. Rev. Let
The limits of social class in explaining ethnic gaps in educational attainment
This paper reports an analysis of the educational attainment and progress between age 11 and age 14 of over 14,500 students from the nationally representative Longitudinal Study of Young People in England (LSYPE). The mean attainment gap in national tests at age 14 between White British and several ethnic minority groups were large, more than three times the size of the gender gap, but at the same time only about one-third of the size of the social class gap. Socio-economic variables could account for the attainment gaps for Black African, Pakistani and Bangladeshi students, but not for Black Caribbean students. Further controls for parental and student attitudes, expectations and behaviours indicated minority ethnic groups were on average more advantaged on these measures than White British students, but this was not reflected proportionately in their levels of attainment. Black Caribbean students were distinctive as the only group making less progress than White British students between age 11 and 14 and this could not be accounted for by any of the measured contextual variables. Possible explanations for the White British-Black Caribbean gap are considered
Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury.
Although axonal regeneration after CNS injury is limited, partial injury is frequently accompanied by extensive functional recovery. To investigate mechanisms underlying spontaneous recovery after incomplete spinal cord injury, we administered C7 spinal cord hemisections to adult rhesus monkeys and analyzed behavioral, electrophysiological and anatomical adaptations. We found marked spontaneous plasticity of corticospinal projections, with reconstitution of fully 60% of pre-lesion axon density arising from sprouting of spinal cord midline-crossing axons. This extensive anatomical recovery was associated with improvement in coordinated muscle recruitment, hand function and locomotion. These findings identify what may be the most extensive natural recovery of mammalian axonal projections after nervous system injury observed to date, highlighting an important role for primate models in translational disease research
Precision delivery of RAS-inhibiting siRNA to KRAS driven cancer via peptide-based nanoparticles
Over 95% of pancreatic adenocarcinomas (PDACs), as well as a large fraction of other tumor types, such as colorectal adenocarcinoma, are driven by KRAS activation. However, no direct RAS inhibitors exist for cancer therapy. Furthermore, the delivery of therapeutic agents of any kind to PDAC in particular has been hindered by the extensive desmoplasia and resultant drug delivery challenges that accompanies these tumors. Small interfering RNA (siRNA) is a promising modality for anti-neoplastic therapy due to its precision and wide range of potential therapeutic targets. Unfortunately, siRNA therapy is limited by low serum half-life, vulnerability to intracellular digestion, and transient therapeutic effect. We assessed the ability of a peptide based, oligonucleotide condensing, endosomolytic nanoparticle (NP) system to deliver siRNA to KRAS-driven cancers. We show that this peptide-based NP is avidly taken up by cancer cell
- …
