7 research outputs found

    Cerebrospinal fluid pro-inflammatory cytokines differentiate parkinsonian syndromes

    Get PDF
    Abstract Introduction Neuroinflammation has been established to be part of the neuropathological changes in Parkinson’s disease (PD) and atypical parkinsonism (APD). Activated microglia play a key role in neuroinflammation by release of cytokines. Evidence of the disparity, if any, in the neuroinflammatory response between PD and APD is sparse. In this study, we investigated CSF cytokine profiles in patients with PD, multiple system atrophy (MSA), or progressive supranuclear palsy (PSP). Methods On a sensitive electrochemiluminescence-based platform (Quickplex, Meso Scale DiscoveryÂź), we examined a panel of C-reactive protein (CRP) and eight selected cytokines, IFN-Îł, IL-10, IL-18, IL-1ÎČ, IL-4, IL-6, TGF-ÎČ1, and TNF-α, among patients with PD (n = 46), MSA (n = 35), and PSP (n = 39) or controls (n = 31). Additionally, CSF total tau protein levels were measured as a marker of nonspecific neurodegeneration for correlation estimates. Results CRP and the pro-inflammatory cytokines TNF-α, IL-1ÎČ, and Il-6 were statistically significantly elevated in MSA and PSP patients compared to PD patients but not compared to control patients. No analytes differed statistically significantly between MSA and PSP patients. The best diagnostic discrimination, evaluated by ROC curve (AUC 0.77, p = 007, 95% CI 0.660–0.867), between PD and MSA patients was seen for a subset of analytes: CRP, TNF-α, IL-1ÎČ, and IFN-Îł. Conclusion Among the investigated cytokines and CRP, we found a statistically significant increase of microglia-derived cytokines in MSA and PSP patients compared to PD patients

    Brain proteome profiling implicates the complement and coagulation cascade in multiple system atrophy brain pathology

    No full text
    BACKGROUND: Multiple system atrophy (MSA) is a rare, progressive, neurodegenerative disorder presenting glia pathology. Still, disease etiology and pathophysiology are unknown, but neuro-inflammation and vascular disruption may be contributing factors to the disease progression. Here, we performed an ex vivo deep proteome profiling of the prefrontal cortex of MSA patients to reveal disease-relevant molecular neuropathological processes. Observations were validated in plasma and cerebrospinal fluid (CSF) of novel cross-sectional patient cohorts. METHODS: Brains from 45 MSA patients and 30 normal controls (CTRLs) were included. Brain samples were homogenized and trypsinized for peptide formation and analyzed by high-performance liquid chromatography tandem mass spectrometry (LC–MS/MS). Results were supplemented by western blotting, immuno-capture, tissue clearing and 3D imaging, immunohistochemistry and immunofluorescence. Subsequent measurements of glial fibrillary acid protein (GFAP) and neuro-filament light chain (NFL) levels were performed by immunoblotting in plasma of 20 MSA patients and 20 CTRLs. Finally, we performed a proteome profiling of 144 CSF samples from MSA and CTRLs, as well as other parkinsonian disorders. Data were analyzed using relevant parametric and non-parametric two-sample tests or linear regression tests followed by post hoc tests corrected for multiple testing. Additionally, high-throughput bioinformatic analyses were applied. RESULTS: We quantified more than 4,000 proteins across samples and identified 49 differentially expressed proteins with significantly different abundances in MSA patients compared with CTRLs. Pathway analyses showed enrichment of processes related to fibrinolysis and complement cascade activation. Increased fibrinogen subunit ÎČ (FGB) protein levels were further verified, and we identified an enriched recognition of FGB by IgGs as well as intra-parenchymal accumulation around blood vessels. We corroborated blood–brain barrier leakage by a significant increase in GFAP and NFL plasma levels in MSA patients that correlated to disease severity and/or duration. Proteome profiling of CSF samples acquired during the disease course, confirmed increased total fibrinogen levels and immune-related components in the soluble fraction of MSA patients. This was also true for the other atypical parkinsonian disorders, dementia with Lewy bodies and progressive supra-nuclear palsy, but not for Parkinson’s disease patients. CONCLUSION: Our results implicate activation of the fibrinolytic cascade and immune system in the brain as contributing factors in MSA associated with a more severe disease course. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00018-022-04378-z

    Progressive Supranuclear Palsy and Corticobasal Degeneration.

    No full text
    Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neurodegenerative tauopathies with neuronal and glial lesions composed of tau that is composed predominantly of isomers with four repeats in the microtubule-binding domain (4R tau). The brain regions vulnerable to pathology in PSP and CBD overlap, but there are differences, particularly with respect to distribution of neuronal loss, the relative abundance of neuronal and glial lesions, the morphologic features of glial lesions, and the frequency of comorbid pathology. Both PSP and CBD have a wide spectrum of clinical manifestations, including disorders of movement and cognition. Recognition of phenotypic diversity in PSP and CBD may improve antemortem diagnostic accuracy, which tends to be very good for the most common presentation of PSP (Richardson syndrome), but poor for the most characteristic presentation of CBD (corticobasal syndrome: CBS). Development of molecular and imaging biomarkers may improve antemortem diagnostic accuracy. Currently, multidisciplinary symptomatic and supportive treatment with pharmacological and non-pharmacological strategies remains the standard of care. In the future, experimental therapeutic trials will be important to slow disease progression
    corecore