1,044 research outputs found

    Production and rescattering of strange baryons at SPS energies in a transport model with hadron potentials

    Full text link
    A mean-field potential version of the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model is used to investigate the production of strange baryons, especially the Λ\Lambdas and Λ\overline{\Lambda}s, from heavy ion collisions at SPS energies. It is found that, with the consideration of both formed and pre-formed hadron potentials in UrQMD, the transverse mass and longitudinal rapidity distributions of experimental data of both Λ\Lambdas and Λ\overline{\Lambda}s can be quantitatively explained fairly well. Our investigation also shows that both the production mechanism and the rescattering process of hadrons play important roles in the final yield of strange baryons.Comment: 15 pages, 7 figure

    Anomalous behavior of pion production in high energy particle collisions

    Get PDF
    A shape of invariant differential cross section for charged hadron production as function of transverse momentum measured in various collider experiments is analyzed. Contrary to the behavior of produced charged kaons, protons and antiprotons, the pion spectra require an anomalously high contribution of an exponential term to describe the shape.Comment: 4 pages, 6 figure

    Coherent Production of Pairs of Parabosons of Order 2

    Full text link
    A parameter-free statistical model is used to study multiplicity signatures for coherent production of charged-pairs of parabosons of order p=2 in comparison with those arising in the case of ordinary bosons, p=1. Two non-negative real parameters arise because "ab" and "ba" are fundamentally distinct pair operators of charge "+1", A-quanta and charge "-1", B-quanta parabosons. In 3D plots of P(q)_m = "The probability of m paraboson charged-pairs and q positive parabosons" versus and , the p=1 curve is found to lie on the relatively narrow 2D p=2 surface.Comment: 25 pages, 16 figures, no macro

    Neutrino emission from dark matter annihilation/decay in light of cosmic e±e^{\pm} and pˉ\bar{p} data

    Full text link
    A self-consistent global fitting method based on the Markov Chain Monte Carlo technique to study the dark matter (DM) property associated with the cosmic ray electron/positron excesses was developed in our previous work. In this work we further improve the previous study to include the hadronic branching ratio of DM annihilation/decay. The PAMELA pˉ/p\bar{p}/p data are employed to constrain the hadronic branching ratio. We find that the 95% (2σ2\sigma) upper limits of the quark branching ratio allowed by the PAMELA pˉ/p\bar{p}/p data is 0.032\sim 0.032 for DM annihilation and 0.044\sim 0.044 for DM decay respectively. This result shows that the DM coupling to pure leptons is indeed favored by the current data. Based on the global fitting results, we further study the neutrino emission from DM in the Galactic center. Our predicted neutrino flux is some smaller than previous works since the constraint from γ\gamma-rays is involved. However, it is still capable to be detected by the forth-coming neutrino detector such as IceCube. The improved points of the present study compared with previous works include: 1) the DM parameters, both the particle physical ones and astrophysical ones, are derived in a global fitting way, 2) constraints from various species of data sets, including γ\gamma-rays and antiprotons are included, and 3) the expectation of neutrino emission is fully self-consistent.Comment: 13 pages, 2 figures, 1 table; Published in IJMPA 201

    Dijet Cross Section and Longitudinal Double Spin Asymmetry Measurements in Polarized Proton-proton Collisions at \sqrt{s}=200 GeV at STAR

    Full text link
    These proceedings show the preliminary results of the dijet cross sections and the dijet longitudinal double spin asymmetries A_LL in polarized proton-proton collisions at \sqrt{s} = 200 GeV at the mid-rapidity |eta| < 0.8. The integrated luminosity of 5.39 pb^{-1} collected during RHIC Run-6 was used in the measurements. The preliminary results are presented as functions of the dijet invariant mass M_jj. The dijet cross sections are in agreement with next-to-leading-order pQCD predictions. The A_LL is compared with theoretical predictions based on various parameterizations of polarized parton distributions of the proton. Projected precision of data analyzed to date from Run-9 are shown.Comment: 8 pages, 5 figures, Proceedings of the SPIN2010 conference (Juelich, Germany, 2010

    More loosely bound hadron molecules at CDF?

    Get PDF
    In a recent paper we have proposed a method to estimate the prompt production cross section of X(3872) at the Tevatron assuming that this particle is a loosely bound molecule of a D and a D*bar meson. Under this hypothesis we find that it is impossible to explain the high prompt production cross section found by CDF at sigma(X(3872)) \sim 30-70 nb as our theoretical prediction is about 300 times smaller than the measured one. Following our work, Artoisenet and Braaten, have suggested that final state interactions in the DD*bar system might be so strong to push the result we obtained for the cross section up to the experimental value. Relying on their conclusions we show that the production of another very narrow loosely bound molecule, the X_s=D_s D_s*bar, could be similarly enhanced. X_s should then be detectable at CDF with a mass of 4080 MeV and a prompt production cross section of sigma(X_s) \sim 1-3 nb.Comment: Minor revisions made. To appear in Phys Lett

    Quantum Number Density Asymmetries Within QCD Jets Correlated With Lambda Polarization

    Full text link
    The observation of jets in a variety of hard-scattering processes has allowed the quantitative study of perturbative quantum chromodynamics (PQCD) by comparing detailed theoretical predictions with a wide range of experimental data. This paper examines how some important, nonperturbative, facets of QCD involving the internal dynamical structure of jets can be studied by measuring the spin orientation of Lambda particles produced in these jets. The measurement of the transverse polarization for an individual Lambda within a QCD jet permits the definition of spin-directed asymmetries in local quantum number densities in rapidity space (such as charge, strangeness and baryon number densities) involving neighboring hadrons in the jet. These asymmetries can only be generated by soft, nonperturbative dynamical mechanisms and such measurements can provide insight not otherwise accessible into the color rearrangement that occurs during the hadronization stage of the fragmentation process.Comment: The replacement manuscript contains a new abstract, five pages of additional material and a revised version of Fig.

    Theoretical Aspects of Particle Production

    Get PDF
    These lectures describe some of the latest data on particle production in high-energy collisions and compare them with theoretical calculations and models based on QCD. The main topics covered are: fragmentation functions and factorization, small-x fragmentation, hadronization models, differences between quark and gluon fragmentation, current and target fragmentation in deep inelastic scattering, and heavy quark fragmentation.Comment: 26 pages, 27 figures. Lectures at International Summer School on Particle Production Spanning MeV and TeV Energies, Nijmegen, The Netherlands, August 199

    The physical environment and multi-professional teamwork in three newly built stroke units

    Get PDF
    Purpose: To explore multi-professional teamwork in relation to the physical environment in three newly built or renovated stroke units. Materials and methods: An observational study was undertaken. The participants were all staff members of a multi-professional team working in the reviewed stroke units. The data were collected using behavioural mapping and semi-structured observations, and they were analysed by content analysis and descriptive statistics. Results: Out of all the observations in the behavioural mapping, very few were of two or more members from the team together with a patient. None of the included stroke units had a co-location for all the members of the multi-professional team. Three main categories emerged from the analysis of the interviews: (i) the hub of the unit; (ii) the division of places; and (iii) power imbalance. All the categories reflected the teamwork in relation to parts of the physical environment. Conclusion: The design of the physical environment is important for multi-professional teamwork. Emphasis must be placed on better understanding the impact of the physical environment and on incorporating the evidence related to multi-professional teamwork during the design of stroke units.IMPLICATIONS FOR REHABILITATION Understanding the link between the physical environment and effective teamwork can lead to more tailored and supportive design solutions. The design of the physical environment should be considered as a vital part of effective teamwork in stroke units. The physical environment should include shared workstations, allowing team members to meet and communicate face to face

    Wroclaw neutrino event generator

    Get PDF
    A neutrino event generator developed by the Wroclaw Neutrino Group is described. The physical models included in the generator are discussed and illustrated with the results of simulations. The considered processes are quasi-elastic scattering and pion production modelled by combining the Δ\Delta resonance excitation and deep inelastic scattering.Comment: Talk given at 2nd Scandanavian Neutrino Workshop (SNOW 2006), Stockholm, Sweden, 2-6 May 2006. 3 pages, 6 figure
    corecore