26 research outputs found

    No evidence for circulating HuD-specific CD8+ T cells in patients with paraneoplastic neurological syndromes and Hu antibodies

    Get PDF
    Aim: In paraneoplastic neurological syndromes (PNS) associated with small cell lung cancer (SCLC) and Hu antibodies (Hu-PNS), Hu antigens expressed by the tumour hypothetically trigger an immune response that also reacts with Hu antigens in the nervous system, resulting in tumour suppression and neuronal damage. To gain more insight into the hypothesized CD8+T cell-mediated immune pathogenesis of these syndromes, we searched for circulating HuD-specific CD8+T cells in a large cohort of Hu-PNS patients and controls. Patients and methods: Blood was tested from 43 Hu-PNS patients, 31 Hu antibody negativ

    Macrophage Tropism of Human Immunodeficiency Virus Type 1 Facilitates In Vivo Escape from Cytotoxic T-Lymphocyte Pressure

    No full text
    Early after seroconversion, macrophage-tropic human immunodeficiency virus type 1 (HIV-1) variants are predominantly found, even when a mixture of macrophage-tropic and non-macrophage-tropic variants was transmitted. For virus contracted by sexual transmission, this is presently explained by selection at the port of entry, where macrophages are infected and T cells are relatively rare. Here we explore an additional mechanism to explain the selection of macrophage-tropic variants in cases where the mucosa is bypassed during transmission, such as blood transfusion, needle-stick accidents, or intravenous drug abuse. With molecularly cloned primary isolates of HIV-1 in irradiated mice that had been reconstituted with a high dose of human peripheral blood mononuclear cells, we found that a macrophage-tropic HIV-1 clone escaped more efficiently from specific cytotoxic T-lymphocyte (CTL) pressure than its non-macrophage-tropic counterpart. We propose that CTLs favor the selective outgrowth of macrophage-tropic HIV-1 variants because infected macrophages are less susceptible to CTL activity than infected T cells

    Discussion

    No full text

    Rapid induction of single donor chimerism after double umbilical cord blood transplantation preceded by reduced intensity conditioning: results of the HOVON 106 phase II study

    No full text
    Double umbilical cord blood transplantation is increasingly applied in the treatment of adult patients with high-risk hematological malignancies and has been associated with improved engraftment as compared to that provided by single unit cord blood transplantation. The mechanism of improved engraftment is, however, still incompletely understood as only one unit survives. In this multicenter phase II study we evaluated engraftment, early chimerism, recovery of different cell lineages and transplant outcome in 53 patients who underwent double cord blood transplantation preceded by a reduced intensity conditioning regimen. Primary graft failure occurred in one patient. Engraftment was observed in 92% of patients with a median time to neutrophil recovery of 36 days (range, 15–102). Ultimate single donor chimerism was established in 94% of patients. Unit predominance occurred by day 11 after transplantation and early CD4(+) T-cell chimerism predicted for unit survival. Total nucleated cell viability was also associated with unit survival. With a median follow up of 35 months (range, 10–51), the cumulative incidence of relapse and non-relapse mortality rate at 2 years were 39% and 19%, respectively. Progressionfree survival and overall survival rates at 2 years were 42% (95% confidence interval, 28–56) and 57% (95% confidence interval, 43–70), respectively. Double umbilical cord blood transplantation preceded by a reduced intensity conditioning regimen using cyclophosphamide/fludarabine/4 Gy total body irradiation results in a high engraftment rate with low non-relapse mortality. Moreover, prediction of unit survival by early CD4(+) lymphocyte chimerism might suggest a role for CD4(+) lymphocyte mediated unit-versus-unit alloreactivity. www.trialregister.nl NTR1573

    A Mutation in the HLA-B(*)2705-Restricted NP(383-391) Epitope Affects the Human Influenza A Virus-Specific Cytotoxic T-Lymphocyte Response In Vitro

    Get PDF
    Viruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in or adjacent to CTL epitopes. Recently, an amino acid substitution (R384G) in an HLA-B(*)2705-restricted CTL epitope in the influenza A virus nucleoprotein (nucleoprotein containing residues 383 to 391 [NP(383-391)]; SRYWAIRTR, where R is the residue that was mutated) was associated with escape from CTL-mediated immunity. The effect of this mutation on the in vitro influenza A virus-specific CTL response was studied. To this end, two influenza A viruses, one with and one without the NP(383-391) epitope, were constructed by reverse genetics and designated influenza viruses A/NL/94-384R and A/NL/94-384G, respectively. The absence of the HLA-B(*)2705-restricted CTL epitope in influenza virus A/NL/94-384G was confirmed by using (51)Cr release assays with a T-cell clone specific for the NP(383-391) epitope. In addition, peripheral blood mononuclear cells (PBMC) stimulated with influenza virus A/NL/94-384G failed to recognize HLA-B(*)2705-positive target cells pulsed with the original NP(383-391) peptide. The proportion of virus-specific CD8(+) gamma interferon (IFN-γ)-positive T cells in in vitro-stimulated PBMC was determined by intracellular IFN-γ staining after restimulation with virus-infected autologous B-lymphoblastoid cell lines and C1R cell lines expressing only HLA-B(*)2705. The proportion of virus-specific CD8(+) T cells was lower in PBMC stimulated in vitro with influenza virus A/NL/94-384G obtained from several HLA-B(*)2705-positive donors than in PBMC stimulated with influenza virus A/NL/94-384R. This finding indicated that amino acid variations in CTL epitopes can affect the virus-specific CTL response and that the NP(383-391) epitope is the most important HLA-B(*)2705-restricted epitope in the nucleoprotein of influenza A viruses
    corecore