62,269 research outputs found

    Simplicial minisuperspace models in the presence of a massive scalar field with arbitrary scalar coupling

    Get PDF
    We extend previous simplicial minisuperspace models to account for arbitrary scalar coupling \eta R\phi^2.Comment: 24 pages and 9 figures. Accepted for publication by Classical and Quantum Gravit

    Anisotropic simplicial minisuperspace model

    Get PDF
    The computation of the simplicial minisuperspace wavefunction in the case of anisotropic universes with a scalar matter field predicts the existence of a large classical Lorentzian universe like our own at late timesComment: 19 pages, Latex, 6 figure

    Self-Adaptive Role-Based Access Control for Business Processes

    Get PDF
    © 2017 IEEE. We present an approach for dynamically reconfiguring the role-based access control (RBAC) of information systems running business processes, to protect them against insider threats. The new approach uses business process execution traces and stochastic model checking to establish confidence intervals for key measurable attributes of user behaviour, and thus to identify and adaptively demote users who misuse their access permissions maliciously or accidentally. We implemented and evaluated the approach and its policy specification formalism for a real IT support business process, showing their ability to express and apply a broad range of self-adaptive RBAC policies

    Coherent phonon transport in short-period two-dimensional superlattices of graphene and boron nitride

    Get PDF
    Promoting coherent transport of phonons at material interfaces is a promising strategy for controlling thermal transport in nanostructures and an alternative to traditional methods based on structural defects. Coherent transport is particularly relevant in short-period heterostructures with smooth interfaces and long-wavelength heat-carrying phonons, such as two-dimensional superlattices of graphene and boron nitride. In this work, we predict phonon properties and thermal conductivities in these superlattices using a normal mode decomposition approach. We study the variation of the frequency dependence of these properties with the periodicity and interface configuration (zigzag and armchair) for superlattices with period lengths within the coherent regime. Our results showed that the thermal conductivity decreases significantly from the first period length (0.44 nm) to the second period length (0.87 nm), 13% across the interfaces and 16% along the interfaces. For greater periods, the conductivity across the interfaces continues decreasing at a smaller rate of 11 W/mK per period length increase (0.43 nm), driven by changes in the phonon group velocities (coherent effects). In contrast, the conductivity along the interfaces slightly recovers at a rate of 2 W/mK per period, driven by changes in the phonon relaxation times (diffusive effects). By changing the interface configuration from armchair to zigzag, the conductivities for all period lengths increase by approximately 7% across the interfaces and 19% along the interfaces
    corecore