2,456 research outputs found

    Competition between antiferromagnetism and superconductivity, electron-hole doping asymmetry and "Fermi Surface" topology in cuprates

    Get PDF
    We investigate the asymmetry between electron and hole doping in a 2D Mott insulator, and the resulting competition between antiferromagnetism (AF) and d-wave superconductivity (SC), using variational Monte Carlo for projected wave functions. We find that key features of the T = 0 phase diagram, such as critical doping for SC-AF coexistence and the maximum value of the SC order parameter, are determined by a single parameter which characterises the topology of the "Fermi surface" at half filling defined by the bare tight-binding parameters. Our results give insight into why AF wins for electron doping, while SC is dominant on the hole doped side. We also suggest using band structure engineering to control the parameter for enhancing SC.Comment: 4 pages, 4 figure

    Diluted Josephson-junction arrays in a magnetic field: phase coherence and vortex glass thresholds

    Get PDF
    The effects of random dilution of junctions on a two-dimensional Josephson-junction array in a magnetic field are considered. For rational values of the average flux quantum per plaquette ff, the superconducting transition temperature vanishes, for increasing dilution, at a critical value xS(f)x_S(f), while the vortex ordering remains stable up to xVL>xSx_{VL}>x_S, much below the value xpx_p corresponding to the geometric percolation threshold. For xVL<x<xp x_{VL}<x<x_p, the array behaves as a zero-temperature vortex-glass. Numerical results for f=1/2f=1/2 from defect energy calculations are presented which are consistent with this scenario.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    Coulomb Interactions and Nanoscale Electronic Inhomogeneities in Manganites

    Get PDF
    We address the issue of endemic electronic inhomogeneities in manganites using extensive simulations on a new model with Coulomb interactions amongst two electronic fluids, one localized (polaronic), the other extended (band-like), and dopant ions. The long range Coulomb interactions frustrate phase separation induced by the strong on site repulsion between the fluids. A single quantum phase ensues which is intrinsically and strongly inhomogeneous at a nano-scale, but homogeneous on meso-scales, with many characteristics (including colossal responses)that agree with experiments. This, we argue, is the origin of nanoscale inhomogeneities in manganites, rather than phase competition and disorder related effects as often proposed.Comment: 4 pages, 3 figure

    Dynamic of a non homogeneously coarse grained system

    Full text link
    To study materials phenomena simultaneously at various length scales, descriptions in which matter can be coarse grained to arbitrary levels, are necessary. Attempts to do this in the static regime (i.e. zero temperature) have already been developed. In this letter, we present an approach that leads to a dynamics for such coarse-grained models. This allows us to obtain temperature-dependent and transport properties. Renormalization group theory is used to create new local potentials model between nodes, within the approximation of local thermodynamical equilibrium. Assuming that these potentials give an averaged description of node dynamics, we calculate thermal and mechanical properties. If this method can be sufficiently generalized it may form the basis of a Molecular Dynamics method with time and spatial coarse-graining.Comment: 4 pages, 4 figure

    Low-Reynolds number swimming in gels

    Full text link
    Many microorganisms swim through gels, materials with nonzero zero-frequency elastic shear modulus, such as mucus. Biological gels are typically heterogeneous, containing both a structural scaffold (network) and a fluid solvent. We analyze the swimming of an infinite sheet undergoing transverse traveling wave deformations in the "two-fluid" model of a gel, which treats the network and solvent as two coupled elastic and viscous continuum phases. We show that geometric nonlinearities must be incorporated to obtain physically meaningful results. We identify a transition between regimes where the network deforms to follow solvent flows and where the network is stationary. Swimming speeds can be enhanced relative to Newtonian fluids when the network is stationary. Compressibility effects can also enhance swimming velocities. Finally, microscopic details of sheet-network interactions influence the boundary conditions between the sheet and network. The nature of these boundary conditions significantly impacts swimming speeds.Comment: 6 pages, 5 figures, submitted to EP

    Atomic-scale perspective on the origin of attractive step interactions on Si(113)

    Full text link
    Recent experiments have shown that steps on Si(113) surfaces self-organize into bunches due to a competition between long-range repulsive and short-range attractive interactions. Using empirical and tight-binding interatomic potentials, we investigate the physical origin of the short-range attraction, and report the formation and interaction energies of steps. We find that the short-range attraction between steps is due to the annihilation of force monopoles at their edges as they combine to form bunches. Our results for the strengths of the attractive interactions are consistent with the values determined from experimental studies on kinetics of faceting.Comment: 4 pages, 3 figures, to appear in Phys. Rev B, Rapid Communication

    Validation of Data Reduction Interactive Pipeline for FORCAST on SOFIA

    Get PDF
    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a heavily modified Boeing 747SP aircraft equipped with 2.5 meter reflecting telescope. Among the suite of instruments onboard is the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). FORCAST features two cameras for short (5-25 microns) and long (25-40 microns) wavelength detection. Making infrared observations in these wavelengths presents a challenge because the telescope and sky emit background radiation magnitudes brighter than the object of interest. Because of this, the raw FORCAST data must be corrected and reduced. The Data Reduction Interactive Pipeline (DRIP) was developed to process all FORCAST data using IDL procedures. Each step of the data reduction and calibration is saved for graphic interface. On all raw data, DRIP cleans bad pixels, applies droop and non-linearity correction, does background subtraction, and jailbar removal. It can optionally do image rectification and combine chop/nod groups. Our current mission, in collaboration with the Division of Planetary Sciences group, is to validate the DRIP output and ensure that the highest quality data is provided for imaging and the astronomical community
    • …
    corecore