165 research outputs found
Determining the crystal-field ground state in rare earth Heavy Fermion materials using soft-x-ray absorption spectroscopy
We infer that soft-x-ray absorption spectroscopy is a versatile method for
the determination of the crystal-field ground state symmetry of rare earth
Heavy Fermion systems, complementing neutron scattering. Using realistic and
universal parameters, we provide a theoretical mapping between the polarization
dependence of Ce spectra and the charge distribution of the Ce
states. The experimental resolution can be orders of magnitude larger than the
crystal field splitting itself. To demonstrate the experimental
feasibility of the method, we investigated CePdSi, thereby settling an
existing disagreement about its crystal-field ground state
Slow crossover in YbXCu4 intermediate valence compounds
We compare the results of measurements of the magnetic susceptibility Chi(T),
the linear coefficient of specific heat Gamma(T)=C(T)/T and 4f occupation
number nf(T) for the intermediate valence compounds YbXCu4 (X = Ag, Cd, In, Mg,
Tl, Zn) to the predictions of the Anderson impurity model, calculated in the
non-crossing approximation (NCA). The crossover from the low temperature Fermi
liquid state to the high temperature local moment state is substantially slower
in the compounds than predicted by the NCA; this corresponds to the
''protracted screening'' recently predicted for the Anderson Lattice. We
present results for the dynamic susceptibility, measured through neutron
scattering experiments, to show that the deviations between theory and
experiment are not due to crystal field effects, and we present
x-ray-absorption fine-structure (XAFS) results that show the local crystal
structure around the X atoms is well ordered, so that the deviations probably
do not arise from Kondo Disorder. The deviations may correlate with the
background conduction electron density, as predicted for protracted screening.Comment: Submitted to Physical Review B on June 7, 2000, accepted for
publication November 2, 2000. Changes to the original manuscript include: 1)
a discussion of the relation of the slow crossover to the conduction electron
density; 2) a discussion of the relation of the reported results to earlier
photoemission results; and, 3) minor editorial change
Determining the in-plane orientation of the ground-state orbital of CeCu2Si2
We have successfully determined the hitherto unknown sign of the B44 Stevens
crystal-field parameter of the tetragonal heavy-fermion compound CeCu2Si2 using
vector q dependent non-resonant inelastic x-ray scattering (NIXS) experiments
at the cerium N4,5 edge. The observed difference between the two different
directions q||[100] and q||[110] is due to the anisotropy of the crystal-field
ground state in the (001) plane and is observable only because of the
utilization of higher than dipole transitions possible in NIXS. This approach
allows us to go beyond the specific limitations of dc magnetic susceptibility,
inelastic neutron scattering, and soft x-ray spectroscopy, and provides us with
a reliable information about the orbital state of the 4f electrons relevant for
the quantitative modeling of the quasi-particles and their interactions in
heavy-fermion systems
Periodic Anderson model with degenerate orbitals: linearized dynamical mean field theory approach
We investigate a multi-orbital extension of the periodic Anderson model with
particular emphasis on electron correlations including orbital fluctuations. By
means of a linearized version of the dynamical mean-field theory, we compute
the renormalization factor, the density of states, the spectral gap and the
local correlation functions for a given set of the intra- and inter-orbital
Coulomb interactions as well as the Hund coupling. It is found that when a
certain condition is met for the intra- and inter-orbital interactions for
electrons, orbital fluctuations are enhanced, thereby enlarging the Kondo
insulating gap. This effect is suppressed in the presence of the Hund coupling.
We also clarify how the Kondo insulator is continuously changed to the Mott
insulator when electron correlations among conduction electrons are increased.Comment: 7 pages, 10 figure
Spin and charge dynamics of the ferromagnetic and antiferromagnetic two-dimensional half-filled Kondo lattice model
We present a detailed numerical study of spin and charge dynamics of the
two-dimensional Kondo lattice model with hopping t and exchange J. At T=0 and J
> 0, the competition between the RKKY interaction and Kondo effect triggers a
quantum phase transition between magnetically ordered and disordered
insulators: J_c/t = 1.45(5). The quasiparticle gap scales as |J|. S(q,\omega),
evolves smoothly from its strong coupling form with spin gap at q = (\pi,\pi)
to a spin wave form. At J>0, A(\vec{k},\omega) shows a dispersion relation
following that of hybridized bands. For J < J_c this feature is supplemented by
shadows thus pointing to a coexistence of Kondo screening and magnetism. For J
< 0 A(\vec{k},\omega) is similar to that of non-interacting electrons in a
staggered magnetic field. Spin, T_S, and charge, T_C, scales are defined. For
weak to intermediate couplings, T_S marks the onset of antiferromagnetic
fluctuations and follows a J^2 law. At strong couplings T_S scales as J. T_C
scales as J both at weak and strong couplings. At and slightly below T_C we
observe i) a rise in the resistivity as a function of decreasing temperature,
ii) a dip in the integrated density of states at the Fermi energy and iii) the
occurrence of hybridized bands in A(k,\omega). It is shown that in the weak
coupling limit, the charge gap of order J is of magnetic origin. The specific
heat shows a two peak structure, the low temperature peak being of magnetic
origin. Our results are compared to various mean-field theories.Comment: 30 pages, 24 figure
Enhanced antiviral function of magnesium chloride-modified Heparin on a broad spectrum of viruses
Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin
Superconductivity in Ce- and U-based "122" heavy-fermion compounds
This review discusses the heavy-fermion superconductivity in Ce- and U-based
compounds crystallizing in the body-centered tetragonal ThCr2Si2 structure.
Special attention will be paid to the theoretical background of these systems
which are located close to a magnetic instability.Comment: 12 pages, 9 figures. Invited topical review (special issue on "Recent
Developments in Superconductivity") Metadata and references update
- …