571 research outputs found

    Phase Coherence in a Driven Double-Well System

    Full text link
    We analyze the dynamics of the molecular field incoherently pumped by the photoassociation of fermionic atoms and coupled by quantum tunnelling in a double-well potential. The relative phase distribution of the molecular modes in each well and their phase coherence are shown to build up owing to quantum mechanical fluctuations starting from the vacuum state. We identify three qualitatively different steady-state phase distributions, depending on the ratio of the molecule-molecule interaction strength to interwell tunnelling, and examine the crossover from a phase-coherent regime to a phase-incoherent regime as this ratio increases.Comment: 5 pages, 2 figure

    Quantum dynamics of cavity assisted photoassociation of Bose-Einstein condensed atoms

    Full text link
    We explore the quantum dynamics of photoassociation of Bose-Einstein condensed atoms into molecules using an optical cavity field. Inside of an optical resonator, photoassociation of quantum degenerate atoms involves the interaction of three coupled quantum fields for the atoms, molecules, and the photons. The feedback created by a high-Q optical cavity causes the cavity field to become a dynamical quantity whose behavior is linked in a nonlinear manner to the atoms inside and where vacuum fluctuations have a more important role than in free space. We develop and compare several methods for calculating the dynamics of the atom-molecule conversion process with a coherently driven cavity field. We first introduce an alternate operator representation for the Hamiltonian from which we derive an improved form of mean field theory and an approximate solution of the Heisenberg-Langevin (HL) equations that properly accounts for quantum noise in the cavity field. It is shown that our improved mean field theory corrects several deficiencies in traditional mean field theory based on expectation values of annihilation/creation operators. Also, we show by direct comparison to numerical solutions of the density matrix equations that our approximate quantum solution of HL equations gives an accurate description of weakly or undriven cavities where mean field theories break down

    Phase Conjugation of a Quantum-Degenerate Atomic Fermi Beam

    Full text link
    We discuss the possibility of phase-conjugation of an atomic Fermi field via nonlinear wave mixing in an ultracold gas. It is shown that for a beam of fermions incident on an atomic phase-conjugate mirror, a time reversed backward propagating fermionic beam is generated similar to the case in nonlinear optics. By adopting an operational definition of the phase, we show that it is possible to infer the presence of the phase-conjugate field by the loss of the interference pattern in an atomic interferometer

    Molecule formation as a diagnostic tool for second order correlations of ultra-cold gases

    Full text link
    We calculate the momentum distribution and the second-order correlation function in momentum space, g(2)(p,p′,t)g^{(2)}({\bf p},{\bf p}',t) for molecular dimers that are coherently formed from an ultracold atomic gas by photoassociation or a Feshbach resonance. We investigate using perturbation theory how the quantum statistics of the molecules depend on the initial state of the atoms by considering three different initial states: a Bose-Einstein condensate (BEC), a normal Fermi gas of ultra-cold atoms, and a BCS-type superfluid Fermi gas. The cases of strong and weak coupling to the molecular field are discussed. It is found that BEC and BCS states give rise to an essentially coherent molecular field with a momentum distribution determined by the zero-point motion in the confining potential. On the other hand, a normal Fermi gas and the unpaired atoms in the BCS state give rise to a molecular field with a broad momentum distribution and thermal number statistics. It is shown that the first-order correlations of the molecules can be used to measure second-order correlations of the initial atomic state.Comment: revtex, 15 pages,8 figure

    Diffraction of ultra-cold fermions by quantized light fields: Standing versus traveling waves

    Full text link
    We study the diffraction of quantum degenerate fermionic atoms off of quantized light fields in an optical cavity. We compare the case of a linear cavity with standing wave modes to that of a ring cavity with two counter-propagating traveling wave modes. It is found that the dynamics of the atoms strongly depends on the quantization procedure for the cavity field. For standing waves, no correlations develop between the cavity field and the atoms. Consequently, standing wave Fock states yield the same results as a classical standing wave field while coherent states give rise to a collapse and revivals in the scattering of the atoms. In contrast, for traveling waves the scattering results in quantum entanglement of the radiation field and the atoms. This leads to a collapse and revival of the scattering probability even for Fock states. The Pauli Exclusion Principle manifests itself as an additional dephasing of the scattering probability

    Transient cosmic acceleration from interacting fluids

    Full text link
    Recent investigations seem to favor a cosmological dynamics according to which the accelerated expansion of the Universe may have already peaked and is now slowing down again \cite{sastaro}. As a consequence, the cosmic acceleration may be a transient phenomenon. We investigate a toy model that reproduces such a background behavior as the result of a time-dependent coupling in the dark sector which implies a cancelation of the "bare" cosmological constant. With the help of a statistical analysis of Supernova Type Ia (SNIa) data we demonstrate that for a certain parameter combination a transient accelerating phase emerges as a pure interaction effect.Comment: Latex file, 23 pages, 21 figures in eps format. Discussion enlarged, new subsection on scalar field dynamics included, accepted for publication in JCAP

    Testing homogeneity with galaxy number counts : light-cone metric and general low-redshift expansion for a central observer in a matter dominated isotropic universe without cosmological constant

    Full text link
    As an alternative to dark energy it has been suggested that we may be at the center of an inhomogeneous isotropic universe described by a Lemaitre-Tolman-Bondi (LTB) solution of Einstein's field equations. In order to test this hypothesis we calculate the general analytical formula to fifth order for the redshift spherical shell mass. Using the same analytical method we write the metric in the light-cone by introducing a gauge invariant quantity G(z)G(z) which together with the luminosity distance DL(z)D_L(z) completely determine the light-cone geometry of a LTB model.Comment: 13 page

    Measuring dark energy spatial inhomogeneity with supernova data

    Full text link
    The gravitational lensing distortion of distant sources by the large-scale distribution of matter in the Universe has been extensively studied. In contrast, very little is known about the effects due to the large-scale distribution of dark energy. We discuss the use of Type Ia supernovae as probes of the spatial inhomogeneity and anisotropy of dark energy. We show that a shallow, almost all-sky survey can limit rms dark energy fluctuations at the horizon scale down to a fractional energy density of ~10^-4Comment: 4 pages; PRL submitte

    Boson-Fermion coherence in a spherically symmetric harmonic trap

    Full text link
    We consider the photoassociation of a low-density gas of quantum-degenerate trapped fermionic atoms into bosonic molecules in a spherically symmetric harmonic potential. For a dilute system and the photoassociation coupling energy small compared to the level separation of the trap, only those fermions in the single shell with Fermi energy are coupled to the bosonic molecular field. Introducing a collective pseudo-spin operator formalism we show that this system can then be mapped onto the Tavis-Cummings Hamiltonian of quantum optics, with an additional pairing interaction. By exact diagonalization of the Hamiltonian, we examine the ground state and low excitations of the Bose-Fermi system, and study the dynamics of the coherent coupling between atoms and molecules. In a semiclassical description of the system, the pairing interaction between fermions is shown to result in a self-trapping transition in the photoassociation, with a sudden suppression of the coherent oscillations between atoms and molecules. We also show that the full quantum dynamics of the system is dominated by quantum fluctuations in the vicinity of the self-trapping solution.Comment: 16 pages, 14 figure
    • …
    corecore