385 research outputs found

    Generalized Lie bialgebroids and Jacobi structures

    Full text link
    The notion of a generalized Lie bialgebroid (a generalization of the notion of a Lie bialgebroid) is introduced in such a way that a Jacobi manifold has associated a canonical generalized Lie bialgebroid. As a kind of converse, we prove that a Jacobi structure can be defined on the base space of a generalized Lie bialgebroid. We also show that it is possible to construct a Lie bialgebroid from a generalized Lie bialgebroid and, as a consequence, we deduce a duality theorem. Finally, some special classes of generalized Lie bialgebroids are considered: triangular generalized Lie bialgebroids and generalized Lie bialgebras.Comment: 32 page

    A supergeometric approach to Poisson reduction

    Full text link
    This work introduces a unified approach to the reduction of Poisson manifolds using their description by graded symplectic manifolds. This yields a generalization of the classical Poisson reduction by distributions (Marsden-Ratiu reduction). Further it allows one to construct actions of strict Lie 2-groups and to describe the corresponding reductions.Comment: 40 pages. Final version accepted for publicatio

    Jacobi structures revisited

    Full text link
    Jacobi algebroids, that is graded Lie brackets on the Grassmann algebra associated with a vector bundle which satisfy a property similar to that of the Jacobi brackets, are introduced. They turn out to be equivalent to generalized Lie algebroids in the sense of Iglesias and Marrero and can be viewed also as odd Jacobi brackets on the supermanifolds associated with the vector bundles. Jacobi bialgebroids are defined in the same manner. A lifting procedure of elements of this Grassmann algebra to multivector fields on the total space of the vector bundle which preserves the corresponding brackets is developed. This gives the possibility of associating canonically a Lie algebroid with any local Lie algebra in the sense of Kirillov.Comment: 20 page

    The graded Jacobi algebras and (co)homology

    Full text link
    Jacobi algebroids (i.e. `Jacobi versions' of Lie algebroids) are studied in the context of graded Jacobi brackets on graded commutative algebras. This unifies varios concepts of graded Lie structures in geometry and physics. A method of describing such structures by classical Lie algebroids via certain gauging (in the spirit of E.Witten's gauging of exterior derivative) is developed. One constructs a corresponding Cartan differential calculus (graded commutative one) in a natural manner. This, in turn, gives canonical generating operators for triangular Jacobi algebroids. One gets, in particular, the Lichnerowicz-Jacobi homology operators associated with classical Jacobi structures. Courant-Jacobi brackets are obtained in a similar way and use to define an abstract notion of a Courant-Jacobi algebroid and Dirac-Jacobi structure. All this offers a new flavour in understanding the Batalin-Vilkovisky formalism.Comment: 20 pages, a few typos corrected; final version to be published in J. Phys. A: Math. Ge

    Dual branes in topological sigma models over Lie groups. BF-theory and non-factorizable Lie bialgebras

    Full text link
    We complete the study of the Poisson-Sigma model over Poisson-Lie groups. Firstly, we solve the models with targets GG and GG^* (the dual group of the Poisson-Lie group GG) corresponding to a triangular rr-matrix and show that the model over GG^* is always equivalent to BF-theory. Then, given an arbitrary rr-matrix, we address the problem of finding D-branes preserving the duality between the models. We identify a broad class of dual branes which are subgroups of GG and GG^*, but not necessarily Poisson-Lie subgroups. In particular, they are not coisotropic submanifolds in the general case and what is more, we show that by means of duality transformations one can go from coisotropic to non-coisotropic branes. This fact makes clear that non-coisotropic branes are natural boundary conditions for the Poisson-Sigma model.Comment: 24 pages; JHEP style; Final versio

    Poisson-Jacobi reduction of homogeneous tensors

    Full text link
    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold MM, homogeneous with respect to a vector field Δ\Delta on MM, and first-order polydifferential operators on a closed submanifold NN of codimension 1 such that Δ\Delta is transversal to NN. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on MM to the Schouten-Jacobi bracket of first-order polydifferential operators on NN and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can be also understood as a sort of reduction; in the standard case -- a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ\Delta-homogeneous symplectic structures on MM and contact structures on NN.Comment: 19 pages, minor corrections, final version to appear in J. Phys. A: Math. Ge

    Variational Lie algebroids and homological evolutionary vector fields

    Full text link
    We define Lie algebroids over infinite jet spaces and establish their equivalent representation through homological evolutionary vector fields.Comment: Int. Workshop "Nonlinear Physics: Theory and Experiment VI" (Gallipoli, Italy; June-July 2010). Published v3 = v2 minus typos, to appear in: Theoret. and Mathem. Phys. (2011) Vol.167:3 (168:1), 18 page

    On quasi-Jacobi and Jacobi-quasi bialgebroids

    Get PDF
    We study quasi-Jacobi and Jacobi-quasi bialgebroids and their relationships with twisted Jacobi and quasi Jacobi manifolds. We show that we can construct quasi-Lie bialgebroids from quasi-Jacobi bialgebroids, and conversely, and also that the structures induced on their base manifolds are related via a quasi Poissonization

    Generalized shuffles related to Nijenhuis and TD-algebras

    Full text link
    Shuffle and quasi-shuffle products are well-known in the mathematics literature. They are intimately related to Loday's dendriform algebras, and were extensively used to give explicit constructions of free commutative Rota-Baxter algebras. In the literature there exist at least two other Rota-Baxter type algebras, namely, the Nijenhuis algebra and the so-called TD-algebra. The explicit construction of the free unital commutative Nijenhuis algebra uses a modified quasi-shuffle product, called the right-shift shuffle. We show that another modification of the quasi-shuffle product, the so-called left-shift shuffle, can be used to give an explicit construction of the free unital commutative TD-algebra. We explore some basic properties of TD-operators and show that the free unital commutative Nijenhuis algebra is a TD-algebra. We relate our construction to Loday's unital commutative dendriform trialgebras, including the involutive case. The concept of Rota-Baxter, Nijenhuis and TD-bialgebras is introduced at the end and we show that any commutative bialgebra provides such objects.Comment: 20 pages, typos corrected, accepted for publication in Communications in Algebr
    corecore