845 research outputs found

    A Gas Generating System for Complex Gas Mixtures – Multifunctional Application in PTR Method Optimization and Downstream Methanol Synthesis

    Get PDF
    The multifunctional applicability of a gas mixing system is presented within the scope of Carbon2ChemÂź for the simulation of steel mill flue gases and their application in downstream processes. A special focus is set on the parallel operation of the gas mixing system to enable PTR-MS method optimization and methanol synthesis with simulated real gas matrices. Information is gathered for the design of downstream processes and their application, where methanol synthesis is chosen as a model reaction. A proof-of-principle study is presented where operation of a catalytic reactor setup in combination with the gas mixing system and a compressor generate reproducible results. The addition of potential trace components in methanol synthesis is exemplarily demonstrated using ammonia. With respect to the PTR-MS application, the dosing of two calibration gas standards, toluene and carbonyl sulfide, via the gas mixing system were analyzed in detail. The obtained results give insight into its applicability to simulate traces and enables the further development of analytical methods for the analysis of trace impurities in the ppb and ppt range in complex gas mixtures

    Nature of dispersed vanadium oxide: influence of the silica support structure and synthesis methods

    No full text
    Dispersed vanadium oxide samples were prepared on the basis of two differently structured high surface area silica materials (Aerosil 300, SBA-15). For each support material incipient wetness impregnation and a grafting/ion exchange procedure were applied to prepare catalyst samples with comparable vanadium density. The influence of the silica support material and preparation method on the vanadium oxide structure and dispersion has been studied using diffuse reflectance UV-Vis spectroscopy, visible Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). By independent spectroscopic characterization a fully consistent picture regarding the relation of the structure (UV-Vis, Raman) and dispersion (XPS) is developed. Based on the present structural data and recent findings the dispersed vanadium oxide is proposed to consist of monomers and oligomers with a distorted tetrahedral (VO4) structure containing one short V[double bond, length as m-dash]O bond. A different degree of hydroxylation of vanadium gives rise to two V[double bond, length as m-dash]O stretching bands at 1027 and 1040 cm−1. The structure and dispersion of vanadium oxide are more strongly influenced by the support material than by the synthesis method. In this regard the Aerosil 300 samples show a higher degree of oligomerization, i.e. less dispersion of the surface vanadium oxide species, than the SBA-15 samples. Likewise incipient wetness impregnation leads to more oligomerized species than grafting/ion-exchange

    Reoxidation dynamics of highly dispersed VO<sub>x</sub> species supported on Îł-alumina

    No full text
    The VOx/γ-Al2O3 catalyst VA-200, which was introduced in a previous article, is further characterized by XPS and visible Raman spectroscopy. The reoxidation of highly dispersed VOx species with gas phase oxygen is investigated in detail and is described by an empirical kinetic model. It is observed that the reoxidation of reduced VOx/γ-Al2O3 catalyst is strongly affected by the presence of water. The proposed kinetic model includes a distinct coverage of VOx species with water or hydroxyl groups in the investigated temperature range of 479–712 K. Hydrated surface species are oxidized under release of water. Best fits of the experimental data can be achieved with first order rate laws with respect to oxygen concentration. Experiments are performed in an ideally mixed Berty-type reactor using oxygen step-marking over the reduced catalyst. The evolution of oxygen concentration using the kinetic model is in agreement with the experimentally observed behaviour. The signal of water released during the reaction can be modeled only qualitatively, which (presumably) stems from its sorption behaviour on the acidic alumina support. The oxidation of VOx species furthermore depends on the reaction temperature. The oxidation of V+III to V+V cannot be completely achieved at temperatures below 673 K. However, the activation energy of this reaction is low, as suggested by the absence of strong variations of the response shapes with respect to temperature

    Determination of trace compounds and artifacts in nitrogen background measurements by proton transfer reaction time-of-flight mass spectrometry under dry and humid conditions

    Get PDF
    A qualitative analysis was applied for the determination of trace compounds at the parts per trillion in volume (pptv) level in the mass spectra of nitrogen of different qualities (5.0 and 6.0) under dry and humid conditions. This qualitative analysis enabled the classification and discovery of hundreds of new ions (e.g., [Sx]H+ species) and artifacts such as parasitic ions and memory effects and their differentiation from real gas impurities. With this analysis, the humidity dependency of all kind of ions in the mass spectrum was determined. Apart from the inorganic artifacts previously discovered, many new organic ions were assigned as instrumental artifacts and new isobaric interferences could be elucidated. From 1140 peaks found in the mass range m/z 0–800, only 660 could be analyzed due to sufficient intensity, from which 463 corresponded to compounds. The number of peaks in nitrogen proton transfer reaction (PTR) spectra was similarly dominated by nonmetallic oxygenated organic compounds (23.5%) and hydrocarbons (24.1%) Regarding only gas impurities, hydrocarbons were the main compound class (50.2%). The highest contribution to the total ion signal for unfiltered nitrogen under dry and humid conditions was from nonmetallic oxygenated compounds. Under dry conditions, nitrogen-containing compounds exhibit the second highest contribution of 89% and 96% for nitrogen 5.0 and 6.0, respectively, whereas under humid conditions, hydrocarbons become the second dominant group with 69% and 86% for nitrogen 5.0 and 6.0, respectively. With the gathered information, a database can be built as a tool for the elucidation of instrumental and intrinsic gas matrix artifacts in PTR mass spectra and, especially in cases, where dilution with inert gases plays a significant role

    Linear Stochastic Models of Nonlinear Dynamical Systems

    Full text link
    We investigate in this work the validity of linear stochastic models for nonlinear dynamical systems. We exploit as our basic tool a previously proposed Rayleigh-Ritz approximation for the effective action of nonlinear dynamical systems started from random initial conditions. The present paper discusses only the case where the PDF-Ansatz employed in the variational calculation is ``Markovian'', i.e. is determined completely by the present values of the moment-averages. In this case we show that the Rayleigh-Ritz effective action of the complete set of moment-functions that are employed in the closure has a quadratic part which is always formally an Onsager-Machlup action. Thus, subject to satisfaction of the requisite realizability conditions on the noise covariance, a linear Langevin model will exist which reproduces exactly the joint 2-time correlations of the moment-functions. We compare our method with the closely related formalism of principal oscillation patterns (POP), which, in the approach of C. Penland, is a method to derive such a linear Langevin model empirically from time-series data for the moment-functions. The predictive capability of the POP analysis, compared with the Rayleigh-Ritz result, is limited to the regime of small fluctuations around the most probable future pattern. Finally, we shall discuss a thermodynamics of statistical moments which should hold for all dynamical systems with stable invariant probability measures and which follows within the Rayleigh-Ritz formalism.Comment: 36 pages, 5 figures, seceq.sty for sequential numbering of equations by sectio

    Stimfit: A fast visualization and analysis environment for cellular neurophysiology

    Get PDF
    Stimfit is a free cross-platform software package for viewing and analyzing electrophysiological data. It supports most standard file types for cellular neurophysiology and other biomedical formats. Its analysis algorithms have been used and validated in several experimental laboratories. Its embedded Python scripting interface makes Stimfit highly extensible and customizable
    • 

    corecore