73 research outputs found
Optical diode based on the chirality of guided photons
Photons are nonchiral particles: their handedness can be both left and right.
However, when light is transversely confined, it can locally exhibit a
transverse spin whose orientation is fixed by the propagation direction of the
photons. Confined photons thus have chiral character. Here, we employ this to
demonstrate nonreciprocal transmission of light at the single-photon level
through a silica nanofibre in two experimental schemes. We either use an
ensemble of spin-polarised atoms that is weakly coupled to the nanofibre-guided
mode or a single spin-polarised atom strongly coupled to the nanofibre via a
whispering-gallery-mode resonator. We simultaneously achieve high optical
isolation and high forward transmission. Both are controlled by the internal
atomic state. The resulting optical diode is the first example of a new class
of nonreciprocal nanophotonic devices which exploit the chirality of confined
photons and which are, in principle, suitable for quantum information
processing and future quantum optical networks
Process tomography of field damping and measurement of Fock state lifetimes by quantum non-demolition photon counting in a cavity
The relaxation of a quantum field stored in a high- superconducting cavity
is monitored by non-resonant Rydberg atoms. The field, subjected to repetitive
quantum non-demolition (QND) photon counting, undergoes jumps between photon
number states. We select ensembles of field realizations evolving from a given
Fock state and reconstruct the subsequent evolution of their photon number
distributions. We realize in this way a tomography of the photon number
relaxation process yielding all the jump rates between Fock states. The damping
rates of the photon states () are found to increase
linearly with . The results are in excellent agreement with theory including
a small thermal contribution
Phase space tweezers for tailoring cavity fields by quantum Zeno dynamics
We discuss an implementation of Quantum Zeno Dynamics in a Cavity Quantum
Electrodynamics experiment. By performing repeated unitary operations on atoms
coupled to the field, we restrict the field evolution in chosen subspaces of
the total Hilbert space. This procedure leads to promising methods for
tailoring non-classical states. We propose to realize `tweezers' picking a
coherent field at a point in phase space and moving it towards an arbitrary
final position without affecting other non-overlapping coherent components.
These effects could be observed with a state-of-the-art apparatus
Reconstruction of non-classical cavity field states with snapshots of their decoherence
The state of a microscopic system encodes its complete quantum description, from which the probabilities of all measurement outcomes are inferred. Being a statistical concept, the state cannot be obtained from a single system realization, but can instea
Quantum Zeno dynamics of a field in a cavity
We analyze the quantum Zeno dynamics that takes place when a field stored in
a cavity undergoes frequent interactions with atoms. We show that repeated
measurements or unitary operations performed on the atoms probing the field
state confine the evolution to tailored subspaces of the total Hilbert space.
This confinement leads to non-trivial field evolutions and to the generation of
interesting non-classical states, including mesoscopic field state
superpositions. We elucidate the main features of the quantum Zeno mechanism in
the context of a state-of-the-art cavity quantum electrodynamics experiment. A
plethora of effects is investigated, from state manipulations by phase space
tweezers to nearly arbitrary state synthesis. We analyze in details the
practical implementation of this dynamics and assess its robustness by
numerical simulations including realistic experimental imperfections. We
comment on the various perspectives opened by this proposal
- …