96 research outputs found

    modCHIMERA: A novel murine closed-head model of moderate traumatic brain injury

    Get PDF
    AbstractTraumatic brain injury is a major source of global disability and mortality. Preclinical TBI models are a crucial component of therapeutic investigation. We report a tunable, monitored model of murine non-surgical, diffuse closed-head injury—modCHIMERA—characterized by impact as well as linear and rotational acceleration. modCHIMERA is based on the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) platform. We tested this model at 2 energy levels: 1.7 and 2.1 Joules—substantially higher than previously reported for this system. Kinematic analysis demonstrated linear acceleration exceeding injury thresholds in humans, although outcome metrics tracked impact energy more closely than kinematic parameters. Acute severity metrics were consistent with a complicated-mild or moderate TBI, a clinical population characterized by high morbidity but potentially reversible pathology. Axonal injury was multifocal and bilateral, neuronal death was detected in the hippocampus, and microglial neuroinflammation was prominent. Acute functional analysis revealed prolonged post-injury unconsciousness, and decreased spontaneous behavior and stimulated neurological scores. Neurobehavioral deficits were demonstrated in spatial learning/memory and socialization at 1-month. The overall injury profile of modCHIMERA corresponds with the range responsible for a substantial portion of TBI-related disability in humans. modCHIMERA should provide a reliable platform for efficient analysis of TBI pathophysiology and testing of treatment modalities.</jats:p

    Investigation of Mitochondrial Dysfunction by Sequential Microplate-Based Respiration Measurements from Intact and Permeabilized Neurons

    Get PDF
    Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria

    The Familial Intracranial Aneurysm (FIA) study protocol

    Get PDF
    BACKGROUND: Subarachnoid hemorrhage (SAH) due to ruptured intracranial aneurysms (IAs) occurs in about 20,000 people per year in the U.S. annually and nearly half of the affected persons are dead within the first 30 days. Survivors of ruptured IAs are often left with substantial disability. Thus, primary prevention of aneurysm formation and rupture is of paramount importance. Prior studies indicate that genetic factors are important in the formation and rupture of IAs. The long-term goal of the Familial Intracranial Aneurysm (FIA) Study is to identify genes that underlie the development and rupture of intracranial aneurysms (IA). METHODS/DESIGN: The FIA Study includes 26 clinical centers which have extensive experience in the clinical management and imaging of intracerebral aneurysms. 475 families with affected sib pairs or with multiple affected relatives will be enrolled through retrospective and prospective screening of potential subjects with an IA. After giving informed consent, the proband or their spokesperson invites other family members to participate. Each participant is interviewed using a standardized questionnaire which covers medical history, social history and demographic information. In addition blood is drawn from each participant for DNA isolation and immortalization of lymphocytes. High- risk family members without a previously diagnosed IA undergo magnetic resonance angiography (MRA) to identify asymptomatic unruptured aneurysms. A 10 cM genome screen will be performed to identify FIA susceptibility loci. Due to the significant mortality of affected individuals, novel approaches are employed to reconstruct the genotype of critical deceased individuals. These include the intensive recruitment of the spouse and children of deceased, affected individuals. DISCUSSION: A successful, adequately-powered genetic linkage study of IA is challenging given the very high, early mortality of ruptured IA. Design features in the FIA Study that address this challenge include recruitment at a large number of highly active clinical centers, comprehensive screening and recruitment techniques, non-invasive vascular imaging of high-risk subjects, genome reconstruction of dead affected individuals using marker data from closely related family members, and inclusion of environmental covariates in the statistical analysis

    Dehydrogenase activity of the microbial biomass in soils from a field experiment amended with heavy metal contaminated sewage sludges.

    No full text
    Dehydrogenase activity (DHA) of the microbial biomass was measured in sewage sludge amended soil samples collected from the Braunschweig experimental site, Germany. The site had received additions of sludge with or without heavy metals at two application rates (100 m3/ha per year and 300 m3/ha per year) on soils of ‘low’ (4.8–5.8) and ‘high’ (5.4–7.0) pH since 1980. DHA was found to be a sensitive and precise assay for determining the effect of heavy metals on substrate-induced (glucose) microbial biomass in sewage sludge amended soils. Effects on DHA were determined in relation to heavy metal concentrations and other soil factors. Addition of relatively uncontaminated sludge enhanced DHA, but this was dependent on the level and type of sludge addition. Adverse metal effects were only significant in the most contaminated soils where sludge had been added to the ‘high’ andd ‘low’ pH treatments at Braunschweig. However, these effects were small compared to the effects of high rates of sludge addition alone, despite exceeding statutory limits for Zn and Cu, where concentrations reached 341 and 99 μg/g, respectively

    Rhizobium leguminosarum bv. trifolii in soils amended with heavy metal contaminated sewage sludges.

    No full text
    Soils from a well controlled field experiment were screened for the presence and number of cells of Rhizobium leguminosarum bv. trifolii capable of effectively nodulating the host plant, white clover (Trifolium repens). Soils had been amended with anaerobically-digested or undigested sewage sludge at rates of 0, 100 and 300 m3 ha −1 yr−1on plots of differing pH since 1980 and up to the present. Applications of anaerobically-digested sludge included additions with or without heavy metal salts. Rhizobium were present in all of the treatments, apart from the most metal-contaminated treatment in the soil of lower pH, despite the absence of the host plant from the field sward. Lack of nodulation and nitrogen fixation (acetylene reduction activity) for T. repens growing in soils was, in some cases, probably caused by the high concentrations of extractable nitrate present as plants subsequently grown in N-free media were effectively nodulated. Important effects on the size of the effective rhizobial population were apparent in relation to the soil pH, sludge type and addition rates, and the concentration of heavy metals present
    corecore