980 research outputs found

    Simulation of transient energy distributions in sub-ns streamer formation

    Get PDF
    Breakdown and streamer formation is simulated in atmospheric pressure nitrogen for a 2D planar electrode system. A PIC code with multigrid potential solver is used to simulate the evolution of the non-equilibrium ionization front on sub-nanosecond timescales. The ion and electron energy distributions are computed, accounting for the inclusion of inelastic scattering of electrons, and collisionally excited metastable production and ionization. Of particular interest is the increased production of metastable and low-energy ions and electrons when the applied field is reversed during the progress of the ionization front, giving insight into the improved species yields in nanosecond pulsed systems

    X - Ray Flares and Their Connection With Prompt Emission in GRBs

    Full text link
    We use a wavelet technique to investigate the time variations in the light curves from a sample of GRBs detected by Fermi and Swift. We focus primarily on the behavior of the flaring region of Swift-XRT light curves in order to explore connections between variability time scales and pulse parameters (such as rise and decay times, widths, strengths, and separation distributions) and spectral lags. Tight correlations between some of these temporal features suggest a common origin for the production of X-ray flares and the prompt emission.Comment: 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: paper 15 in eConf Proceedings C130414

    The evolution of electron overdensities in magnetic fields

    Get PDF
    When a neutral gas impinges on a stationary magnetized plasma an enhancement in the ionization rate occurs when the neutrals exceed a threshold velocity. This is commonly known as the critical ionization velocity effect. This process has two distinct timescales: an ion–neutral collision time and electron acceleration time. We investigate the energization of an ensemble of electrons by their self-electric field in an applied magnetic field. The evolution of the electrons is simulated under different magnetic field and density conditions. It is found that electrons can be accelerated to speeds capable of electron impact ionization for certain conditions. In the magnetically dominated case the energy distribution of the excited electrons shows that typically 1% of the electron population can exceed the initial electrostatic potential associated with the unbalanced ensemble of electrons

    The Hurst Exponent of Fermi GRBs

    Full text link
    Using a wavelet decomposition technique, we have extracted the Hurst exponent for a sample of 46 long and 22 short Gamma-ray bursts (GRBs) detected by the Gamma-ray Burst Monitor (GBM) aboard the Fermi satellite. This exponent is a scaling parameter that provides a measure of long-range behavior in a time series. The mean Hurst exponent for the short GRBs is significantly smaller than that for the long GRBs. The separation may serve as an unbiased criterion for distinguishing short and long GRBs.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The Kenyan assistive technology ecosystem: a network analysis

    Get PDF
    BACKGROUND: Assistive technology is central to the realization of the rights of persons with disabilities. However, there remains limited access to assistive technology throughout much of the world, with particularly poor access in lower- and middle-income countries. Evaluating stakeholder engagement in assistive technology networks has been used as a successful strategy to understand and address gaps in the assistive technology ecosystem. OBJECTIVE: The objective of this research was to provide an overview of the Kenyan Assistive Technology Ecosystem, including available assistive products and related services, and an understanding of the nature and strength of relationships between stakeholders METHODS: In this study, we employed an online qualitative stakeholder survey (2021) with representatives of organizations involved in assistive technology in Kenya. RESULTS: The assistive technology network in Kenya is distributed, with Government Ministries and Agencies and Organizations of persons with disabilities central to the network. The strength of relationships is concentrated on awareness and communication, with fewer organizations actively collaborating. Innovation training organizations are not yet well integrated into the network. CONCLUSIONS: Improving access to assistive technology in Kenya will benefit from greater collaboration amongst all assistive technology stakeholders

    On multiplicities in length spectra of arithmetic hyperbolic three-orbifolds

    Full text link
    Asymptotic laws for mean multiplicities of lengths of closed geodesics in arithmetic hyperbolic three-orbifolds are derived. The sharpest results are obtained for non-compact orbifolds associated with the Bianchi groups SL(2,o) and some congruence subgroups. Similar results hold for cocompact arithmetic quaternion groups, if a conjecture on the number of gaps in their length spectra is true. The results related to the groups above give asymptotic lower bounds for the mean multiplicities in length spectra of arbitrary arithmetic hyperbolic three-orbifolds. The investigation of these multiplicities is motivated by their sensitive effect on the eigenvalue spectrum of the Laplace-Beltrami operator on a hyperbolic orbifold, which may be interpreted as the Hamiltonian of a three-dimensional quantum system being strongly chaotic in the classical limit.Comment: 29 pages, uuencoded ps. Revised version, to appear in NONLINEARIT

    Monolithic Multigrid for Magnetohydrodynamics

    Full text link
    The magnetohydrodynamics (MHD) equations model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. After discretization and linearization, the resulting system of equations is generally difficult to solve due to the coupling between variables, and the heterogeneous coefficients induced by the linearization process. In this paper, we investigate multigrid preconditioners for this system based on specialized relaxation schemes that properly address the system structure and coupling. Three extensions of Vanka relaxation are proposed and applied to problems with up to 170 million degrees of freedom and fluid and magnetic Reynolds numbers up to 400 for stationary problems and up to 20,000 for time-dependent problems
    • 

    corecore