9,904 research outputs found

    Time-decoupled high order continuous space-time finite element schemes for the heat equation

    Get PDF
    Copyright © by SIAMIn Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 6685—6708 Werder et al. demonstrated that time discretizations of the heat equation by a temporally discontinuous Galerkin finite element method could be decoupled by diagonalising the temporal ‘Gram matrices’. In this article we propose a companion approach for the heat equation by using a continuous Galerkin time discretization. As a result, if piecewise polynomials of degree d are used as the trial functions in time and the spatial discretization produces systems of dimension M then, after decoupling, d systems of size M need to be solved rather than a single system of sizeMd. These decoupled systems require complex arithmetic, as did Werder et al.’s technique, but are amenable to parallel solution on modern multi-core architectures. We give numerical tests for temporal polynomial degrees up to six for three different model test problems, using both Galerkin and spectral element spatial discretizations, and show convergence and temporal superconvergence rates that accord with the bounds given by Aziz and Monk, Math. Comp. 52:186 (1989), pp. 255—274. We also interpret error as a function of computational time and see that our high order schemes may offer greater efficiency that the Crank-Nicolson method in terms of accuracy per unit of computational time—although in a multi-core world, with highly tuned iterative solvers, one has to be cautious with such claims. We close with a speculation on the application of these ideas to the Navier-Stokes equations for incompressible fluids

    Computer program to assess impact of fatigue and fracture criteria on weight and cost of transport aircraft

    Get PDF
    A preliminary design analysis tool for rapidly performing trade-off studies involving fatigue, fracture, static strength, weight, and cost is presented. Analysis subprograms were developed for fatigue life, crack growth life, and residual strength; and linked to a structural synthesis module which in turn was integrated into a computer program. The part definition module of a cost and weight analysis program was expanded to be compatible with the upgraded structural synthesis capability. The resultant vehicle design and evaluation program is named VDEP-2. It is an accurate and useful tool for estimating purposes at the preliminary design stage of airframe development. A sample case along with an explanation of program applications and input preparation is presented

    Information Content in Data Sets for a Nucleated-Polymerization Model

    Get PDF
    We illustrate the use of tools (asymptotic theories of standard error quantification using appropriate statistical models, bootstrapping, model comparison techniques) in addition to sensitivity that may be employed to determine the information content in data sets. We do this in the context of recent models [23] for nucleated polymerization in proteins, about which very little is known regarding the underlying mechanisms; thus the methodology we develop here may be of great help to experimentalists

    Substrate rigidity deforms and polarizes active gels

    Get PDF
    We present a continuum model of the coupling between cells and substrate that accounts for some of the observed substrate-stiffness dependence of cell properties. The cell is modeled as an elastic active gel, adapting recently developed continuum theories of active viscoelastic fluids. The coupling to the substrate enters as a boundary condition that relates the cell's deformation field to local stress gradients. In the presence of activity, the coupling to the substrate yields spatially inhomogeneous contractile stresses and deformations in the cell and can enhance polarization, breaking the cell's front-rear symmetry.Comment: 6 pages, 4 figures, EPL forma

    Polariton lasing in high-quality Selenide-based micropillars in the strong coupling regime

    Full text link
    We have designed and fabricated all-epitaxial ZnSe-based optical micropillars exhibiting the strong coupling regime between the excitonic transition and the confined optical cavity modes. At cryogenic temperatures, under non-resonant pulsed optical excitation, we demonstrate single transverse mode polariton lasing operation in the micropillars. Owing to the high quality factors of these microstructures, the lasing threshold remains low even in micropillars of the smallest diameter. We show that this feature can be traced back to a sidewall roughness grain size below 3 nm, and to suppressed in-plane polariton escape.Comment: 5 pages, 3 figure

    Material parameter estimation and hypothesis testing on a 1D viscoelastic stenosis model: Methodology

    Get PDF
    This is the post-print version of the final published paper that is available from the link below. Copyright @ 2013 Walter de Gruyter GmbH.Non-invasive detection, localization and characterization of an arterial stenosis (a blockage or partial blockage in the artery) continues to be an important problem in medicine. Partial blockage stenoses are known to generate disturbances in blood flow which generate shear waves in the chest cavity. We examine a one-dimensional viscoelastic model that incorporates Kelvin–Voigt damping and internal variables, and develop a proof-of-concept methodology using simulated data. We first develop an estimation procedure for the material parameters. We use this procedure to determine confidence intervals for the estimated parameters, which indicates the efficacy of finding parameter estimates in practice. Confidence intervals are computed using asymptotic error theory as well as bootstrapping. We then develop a model comparison test to be used in determining if a particular data set came from a low input amplitude or a high input amplitude; this we anticipate will aid in determining when stenosis is present. These two thrusts together will serve as the methodological basis for our continuing analysis using experimental data currently being collected.National Institute of Allergy and Infectious Diseases, Air Force Office of Scientific Research, Department of Education, and Engineering and Physical Sciences Research Council

    Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing

    Get PDF
    Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process

    High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling

    Get PDF
    Copyright @ 2014 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685–6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (r + 1)D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over inline image for r ⩽100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin–Voigt and Maxwell–Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease
    corecore