63,033 research outputs found

    Pretreatment method for anti-wettable materials

    Get PDF
    Anti-wettable materials brazing processes using titanium and zirconium for surface pretreatmen

    The quiescent progenitors of four Type II-P/L supernovae

    Get PDF
    We present Large Binocular Telescope difference imaging data for the final years of four Type II-P/L supernovae progenitors. For all four, we find no significant evidence for stochastic or steady variability in the U, B, V, or R-bands. Our limits constrain variability to no more than roughly 5-10% of the expected R-band luminosities of the progenitors. These limits are comparable to the observed variability of red supergiants in the Magellanic Clouds. Based on these four events, the probability of a Type II-P/L progenitor having an extended outburst after Oxygen ignition is <37% at 90% confidence. Our observations cannot exclude short outbursts in which the progenitor returns to within ~10% of its quiescent flux on the time scale of months with no dust formation.Comment: 9 pages, 8 figures, 1 table. Accepted to MNRA

    Carbon Trading with Blockchain

    Get PDF
    Blockchain has the potential to accelerate the deployment of emissions trading systems (ETS) worldwide and improve upon the efficiency of existing systems. In this paper, we present a model for a permissioned blockchain implementation based on the successful European Union (EU) ETS and discuss its potential advantages over existing technology. We propose an ETS model that is both backwards compatible and future-proof, characterised by interconnectedness, transparency, tamper-resistance and high liquidity. Further, we identify key challenges to implementation of a blockchain ETS, as well as areas of future work required to enable a fully-decentralised blockchain ETS

    Relativistic Effects in Extrasolar Planetary Systems

    Full text link
    This paper considers general relativistic (GR) effects in currently observed extrasolar planetary systems. Although GR corrections are small, they can compete with secular interactions in these systems and thereby play an important role. Specifically, some of the observed multiple planet systems are close to secular resonance, where the dynamics is extremely sensitive to GR corrections, and these systems can be used as laboratories to test general relativity. For the three-planet solar system Upsilon Andromedae, secular interaction theory implies an 80% probability of finding the system with its observed orbital elements if GR is correct, compared with only a 2% probability in the absence of GR. In the future, tighter constraints can be obtained with increased temporal coverage.Comment: Accepted for publication in International Journal of Modern Physics D; this paper received ``Honorable Mention'' in the 2006 Essay Competition of the Gravity Research Foundation; 9 pages including 1 figur

    Stellar Mergers Are Common

    Full text link
    The observed Galactic rate of stellar mergers or the initiation of common envelope phases brighter than M_V=-3 (M_I=-4) is of order 0.5 (0.3)/year with 90% confidence statistical uncertainties of 0.24-1.1 (0.14-0.65) and factor of 2 systematic uncertainties. The (peak) luminosity function is roughly dN/dL L^(-1.4+/-0.3), so the rates for events more luminous than V1309 Sco (M_V=-7 mag) or V838Mon (M_V=-10 mag) are lower at r~0.1/year and 0.03/year, respectively. The peak luminosity is a steep function of progenitor mass, L M^(2-3). This very roughly parallels the scaling of luminosity with mass on the main sequence, but the transients are ~2000-4000 times more luminous at peak. Combining these, the mass function of the progenitors, dN/dM M^(-2.0+/-0.8), is consistent with the initial mass function, albeit with broad uncertainties. These observational results are also broadly consistent with the estimates of binary population synthesis models. While extragalactic variability surveys can better define the rates and properties of the high luminosity events, systematic, moderate depth (I>16 mag) surveys of the Galactic plane are needed to characterize the low luminosity events. The existing Galactic samples are only ~20% complete and Galactic surveys are (at best) reaching a typical magnitude limit of <13 mag.Comment: Submitted to MNRAS (13 pages, 6 figures, 3 tables
    corecore