27 research outputs found

    Anthropometric, biochemical and clinical assessment of malnutrition in Malaysian patients with advanced cirrhosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is limited data on the nutritional status of Asian patients with various aetiologies of cirrhosis. This study aimed to determine the prevalence of malnutrition and to compare nutritional differences between various aetiologies.</p> <p>Methodology</p> <p>A cross-sectional study of adult patients with decompensated cirrhosis was conducted. Nutritional status was assessed using standard anthropometry, serum visceral proteins and subjective global assessment (SGA).</p> <p>Results</p> <p>Thirty six patients (mean age 59.8 ± 12.8 years; 66.7% males; 41.6% viral hepatitis; Child-Pugh C 55.6%) with decompensated cirrhosis were recruited. Malnutrition was prevalent in 18 (50%) patients and the mean caloric intake was low at 15.2 kcal/kg/day. SGA grade C, as compared to SGA grade B, demonstrated significantly lower anthropometric values in males (BMI 18.1 ± 1.6 vs 26.3 ± 3.5 kg/m2, p < 0.0001; MAMC 19.4 ± 1.5 vs 24.5 ± 3.6 cm, p = 0.002) and females (BMI 19.4 ± 2.7 vs 28.9 ± 4.3, p = 0.001; MAMC 18.0 ± 0.9 vs 28.1 ± 3.6, p < 0.0001), but not with visceral proteins. The SGA demonstrated a trend towards more malnutrition in Child-Pugh C compared to Child-Pugh B liver cirrhosis (40% grade C vs 25% grade C, p = 0.48). Alcoholic cirrhosis had a higher proportion of SGA grade C (41.7%) compared to viral (26.7%) and cryptogenic (28.6%) cirrhosis, but this was not statistically significant.</p> <p>Conclusion</p> <p>Significant malnutrition in Malaysian patients with advanced cirrhosis is common. Alcoholic cirrhosis may have more malnutrition compared to other aetiologies of cirrhosis.</p

    Does Glycine max leaves or Garcinia Cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: a randomized control trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural food supplements with high flavonoid content are often claimed to promote weight-loss and lower plasma cholesterol in animal studies, but human studies have been more equivocal. The aim of this study was firstly to determine the effectiveness of natural food supplements containing <it>Glycine max </it>leaves extract (EGML) or <it>Garcinia cambogia </it>extract (GCE) to promote weight-loss and lower plasma cholesterol. Secondly to examine whether these supplements have any beneficial effect on lipid, adipocytokine or antioxidant profiles.</p> <p>Methods</p> <p>Eighty-six overweight subjects (Male:Female = 46:40, age: 20~50 yr, BMI > 23 < 29) were randomly assigned to three groups and administered tablets containing EGML (2 g/day), GCE (2 g/day) or placebo (starch, 2 g/day) for 10 weeks. At baseline and after 10 weeks, body composition, plasma cholesterol and diet were assessed. Blood analysis was also conducted to examine plasma lipoproteins, triglycerides, adipocytokines and antioxidants.</p> <p>Results</p> <p>EGML and GCE supplementation failed to promote weight-loss or any clinically significant change in %body fat. The EGML group had lower total cholesterol after 10 weeks compared to the placebo group (p < 0.05). EGML and GCE had no effect on triglycerides, non-HDL-C, adipocytokines or antioxidants when compared to placebo supplementation. However, HDL-C was higher in the EGML group (p < 0.001) after 10 weeks compared to the placebo group.</p> <p>Conclusions</p> <p>Ten weeks of EGML or GCE supplementation did not promote weight-loss or lower total cholesterol in overweight individuals consuming their habitual diet. Although, EGML did increase plasma HDL-C levels which is associated with a lower risk of atherosclerosis.</p

    Anti-Obesity Effects of Soy Leaf via

    No full text

    Differences between brain mass and body weight scaling to height: potential mechanism of reduced mass-specific resting energy expenditure of taller adults.

    No full text
    Adult resting energy expenditure (REE) scales as height( approximately 1.5), whereas body weight (BW) scales as height( approximately 2). Mass-specific REE (i.e., REE/BW) is thus lower in tall subjects compared with their shorter counterparts, the mechanism of which is unknown. We evaluated the hypothesis that high-metabolic-rate brain mass scales to height with a power significantly less than that of BW, a theory that if valid would provide a potential mechanism for height-related REE effects. The hypothesis was tested by measuring brain mass on a large (n = 372) postmortem sample of Thai men. Since brain mass-body size relations may be influenced by age, the hypothesis was secondarily explored in Thai men age or =20<30 yr. The scaling of large body compartments was examined in a third group of Asian men living in New York (NY, n = 28) with MRI and dual-energy X-ray absorptiometry. Brain mass scaled to height with a power (mean +/- SEE; 0.46 +/- 0.13) significantly smaller (P < 0.001) than that of BW scaled to height (2.36 +/- 0.19) in the whole group of Thai men; brain mass/BW scaled negatively to height (-1.94 +/- 0.20, P < 0.001). Similar results were observed in younger Thai men, and results for brain mass/BW vs. height were directionally the same (P = 0.09) in Korean men. Skeletal muscle and bone scaled to height with powers similar to that of BW (i.e., approximately 2-3) in the NY Asian men. Models developed using REE estimates in Thai men suggest that brain accounts for most of the REE/BW height dependency. Tall and short men thus differ in relative brain mass, but the proportions of BW as large compartments appear independent of height, observations that provide a potential mechanistic basis for related differences in REE and that have implications for the study of adult energy requirement
    corecore