951 research outputs found

    Characterizing the Heavy Elements in Globular Cluster M22 and an Empirical s-process Abundance Distribution Derived from the Two Stellar Groups

    Get PDF
    We present an empirical s-process abundance distribution derived with explicit knowledge of the r-process component in the low-metallicity globular cluster M22. We have obtained high-resolution, high signal-to-noise spectra for 6 red giants in M22 using the MIKE spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory. In each star we derive abundances for 44 species of 40 elements, including 24 elements heavier than zinc (Z=30) produced by neutron-capture reactions. Previous studies determined that 3 of these stars (the "r+s group") have an enhancement of s-process material relative to the other 3 stars (the "r-only group"). We confirm that the r+s group is moderately enriched in Pb relative to the r-only group. Both groups of stars were born with the same amount of r-process material, but s-process material was also present in the gas from which the r+s group formed. The s-process abundances are inconsistent with predictions for AGB stars with M =< 3 Msun and suggest an origin in more massive AGB stars capable of activating the Ne-22(alpha,n)Mg-25 reaction. We calculate the s-process "residual" by subtracting the r-process pattern in the r-only group from the abundances in the r+s group. In contrast to previous r- and s-process decompositions, this approach makes no assumptions about the r- and s-process distributions in the solar system and provides a unique opportunity to explore s-process yields in a metal-poor environment.Comment: Accepted for publication in the Astrophysical Journal. 18 pages, 8 figure

    Observational Constraints on First-Star Nucleosynthesis. I. Evidence for Multiple Progenitors of CEMP-no Stars

    Get PDF
    We investigate anew the distribution of absolute carbon abundance, AA(C) =logϵ= \log\,\epsilon (C), for carbon-enhanced metal-poor (CEMP) stars in the halo of the Milky Way, based on high-resolution spectroscopic data for a total sample of 305 CEMP stars. The sample includes 147 CEMP-ss (and CEMP-r/s) stars, 127 CEMP-no stars, and 31 CEMP stars that are unclassified, based on the currently employed [Ba/Fe] criterion. We confirm previous claims that the distribution of AA(C) for CEMP stars is (at least) bimodal, with newly determined peaks centered on AA(C)=7.96=7.96 (the high-C region) and AA(C)=6.28 =6.28 (the low-C region). A very high fraction of CEMP-ss (and CEMP-r/s) stars belong to the high-C region, while the great majority of CEMP-no stars reside in the low-C region. However, there exists complexity in the morphology of the AA(C)-[Fe/H] space for the CEMP-no stars, a first indication that more than one class of first-generation stellar progenitors may be required to account for their observed abundances. The two groups of CEMP-no stars we identify exhibit clearly different locations in the AA(Na)-AA(C) and AA(Mg)-AA(C) spaces, also suggesting multiple progenitors. The clear distinction in AA(C) between the CEMP-ss (and CEMP-r/sr/s) stars and the CEMP-no stars appears to be $as\ successful,and, and likely\ more\ astrophysically\ fundamental$, for the separation of these sub-classes as the previously recommended criterion based on [Ba/Fe] (and [Ba/Eu]) abundance ratios. This result opens the window for its application to present and future large-scale low- and medium-resolution spectroscopic surveys.Comment: 26pages, 7 figures, and 3 Tables ; Accepted for publication in ApJ; added more data and corrected minor inconsistencies existed in the compiled data of the previous studie

    The R-Process Alliance: A Comprehensive Abundance Analysis of HD 222925, a Metal-Poor Star with an Extreme R-Process Enhancement of [Eu/H] = -0.14

    Full text link
    We present a detailed abundance analysis of the bright (V = 9.02), metal-poor ([Fe/H] = -1.47 +/- 0.08) field red horizontal-branch star HD 222925, which was observed as part of an ongoing survey by the R-Process Alliance. We calculate stellar parameters and derive abundances for 46 elements based on 901 lines examined in a high-resolution optical spectrum obtained using the Magellan Inamori Kyocera Echelle spectrograph. We detect 28 elements with 38 <= Z <= 90; their abundance pattern is a close match to the Solar r-process component. The distinguishing characteristic of HD 222925 is an extreme enhancement of r-process elements ([Eu/Fe] = +1.33 +/- 0.08, [Ba/Eu] = -0.78 +/- 0.10) in a moderately metal-poor star, so the abundance of r-process elements is the highest ([Eu/H] = -0.14 +/- 0.09) in any known r-process-enhanced star. The abundance ratios among lighter (Z <= 30) elements are typical for metal-poor stars, indicating that production of these elements was dominated by normal Type II supernovae, with no discernible contributions from Type Ia supernovae or asymptotic giant branch stars. The chemical and kinematic properties of HD 222925 suggest it formed in a low-mass dwarf galaxy, which was enriched by a high-yield r-process event before being disrupted by interaction with the Milky Way.Comment: Accepted for publication in the Astrophysical Journal (17 pages, 4 figures, 3 tables

    The Ubiquity of the Rapid Neutron-Capture Process

    Get PDF
    To better characterize the abundance patterns produced by the r-process, we have derived new abundances or upper limits for the heavy elements zinc (Zn), yttrium (Y), lanthanum (La), europium (Eu), and lead (Pb). Our sample of 161 metal-poor stars includes new measurements from 88 high resolution and high signal-to-noise spectra obtained with the Tull Spectrograph on the 2.7m Smith Telescope at McDonald Observatory, and other abundances are adopted from the literature. We use models of the s-process in AGB stars to characterize the high Pb/Eu ratios produced in the s-process at low metallicity, and our new observations then allow us to identify a sample of stars with no detectable s-process material. In these stars, we find no significant increase in the Pb/Eu ratios with increasing metallicity. This suggests that s-process material was not widely dispersed until the overall Galactic metallicity grew considerably, perhaps even as high as [Fe/H]=-1.4. We identify a dispersion of at least 0.5 dex in [La/Eu] in metal-poor stars with [Eu/Fe]<+0.6 attributable to the r-process, suggesting that there is no unique "pure" r-process elemental ratio among pairs of rare earth elements. We confirm earlier detections of an anti-correlation between Y/Eu and Eu/Fe bookended by stars strongly enriched in the r-process (e.g., CS 22892-052) and those with deficiencies of the heavy elements (e.g., HD 122563). We can reproduce the range of Y/Eu ratios using simulations of high-entropy neutrino winds of core-collapse supernovae that include charged-particle and neutron-capture components of r-process nucleosynthesis. The heavy element abundance patterns in most metal-poor stars do not resemble that of CS 22892-052, but the presence of heavy elements such as Ba in nearly all metal-poor stars without s-process enrichment suggests that the r-process is a common phenomenon.Comment: Accepted for publication in the Astrophysical Journal. 25 pages, 13 figure

    The Chemical Abundances Of Stars In The Halo (CASH) Project. II. A Sample Of 14 Extremely Metal-Poor Stars

    Get PDF
    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R similar to 15,000) and corresponding high-resolution (R similar to 35,000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] < -3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< -3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] less than or similar to -3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire similar to 500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 02-16783, PHY 0822648Carnegie Institution of WashingtonNSF AST-0908978Astronom

    The Extreme Overabundance of Molybdenum in Two Metal-Poor Stars

    Full text link
    We report determinations of the molybdenum abundances in five mildly to extremely metal-poor turnoff stars using five Mo II lines near 2000A. In two of the stars, the abundance of molybdenum is found to be extremely enhanced, as high or higher than the neighboring even-Z elements ruthenium and zirconium. Of the several nucleosynthesis scenarios envisioned for the production of nuclei in this mass range in the oldest stars, a high-entropy wind acting in a core-collapse supernova seems uniquely capable of the twin aspects of a high molybdenum overproduction confined to a narrow mass range. Whatever the details of the nucleosynthesis mechanism, however, this unusual excess suggests that very few individual nucleosynthesis events were responsible for the synthesis of the light trans-Fe heavy elements in these cases, an unexpected result given that both are only moderately metal-poor.Comment: updated in v2, including text missing from the third-to-last paragraph in the published versio

    Detection of the Second r-process Peak Element Tellurium in Metal-Poor Stars

    Get PDF
    Using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope, we detect neutral tellurium in three metal-poor stars enriched by products of r-process nucleosynthesis, BD+17 3248, HD 108317, and HD 128279. Tellurium (Te, Z=52) is found at the second r-process peak (A=130) associated with the N=82 neutron shell closure, and it has not been detected previously in Galactic halo stars. The derived tellurium abundances match the scaled solar system r-process distribution within the uncertainties, confirming the predicted second peak r-process residuals. These results suggest that tellurium is predominantly produced in the main component of the r-process, along with the rare earth elements.Comment: Accepted for publication in the Astrophysical Journal Letters (5 pages, 2 figures

    New Detections of Arsenic, Selenium, and Other Heavy Elements in Two Metal-Poor Stars

    Get PDF
    We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to obtain new high-quality spectra covering the 1900 to 2360 Angstrom wavelength range for two metal-poor stars, HD 108317 and HD 128279. We derive abundances of Cu II, Zn II, As I, Se I, Mo II, and Cd II, which have not been detected previously in either star. Abundances derived for Ge I, Te I, Os II, and Pt I confirm those derived from lines at longer wavelengths. We also derive upper limits from the non-detection of W II, Hg II, Pb II, and Bi I. The mean [As/Fe] ratio derived from these two stars and five others in the literature is unchanged over the metallicity range -2.8 = +0.28 +/- 0.14 (std. dev. = 0.36 dex). The mean [Se/Fe] ratio derived from these two stars and six others in the literature is also constant, = +0.16 +/- 0.09 (std. dev. = 0.26 dex). The As and Se abundances are enhanced relative to a simple extrapolation of the iron-peak abundances to higher masses, suggesting that this mass region (75 < A < 82) may be the point at which a different nucleosynthetic mechanism begins to dominate the quasi-equilibrium alpha-rich freezeout of the iron peak. = +0.56 +/- 0.23 in HD 108317 and HD 128279, and we infer that lines of Cu I may not be formed in local thermodynamic equilibrium in these stars. The [Zn/Fe], [Mo/Fe], [Cd/Fe], and [Os/Fe] ratios are also derived from neutral and ionized species, and each ratio pair agrees within the mutual uncertainties, which range from 0.15 to 0.52 dex.Comment: Accepted for publication in the Astrophysical Journal. 13 pages, 10 figure
    corecore