22 research outputs found

    The host model Galleria mellonella is resistant to taylorellae infection

    No full text
    The genusTaylorellais composed of two species: (i)Taylorella equigenitalis,the causative agent of CEM, a venereally transmitted infection of Equidaeand (ii)Taylorella asinigenitalis, a closely related species considered to benonpathogenic, although experimental infection of mares with this bacteriumresulted in clinical signs of vaginitis, cervicitis or endometritis. Currently, thereis a need for an alternative host model to further study the taylorellae species.In this context, we exploredGalleria mellonellalarvae as potential alternativemodel hosts for taylorellae. Our results showed that infection ofG. mellonellalarvae with a high concentration of taylorellae did not induce overtG. mellonellamortality and that taylorellae were not able to proliferate withinG. mellonella. In conclusion,G. mellonellalarvae are resistant to taylorellaeinfection and therefore do not constitute a relevant alternative system forstudying the virulence of taylorellae species

    Relevance of F-Specific RNA Bacteriophages in Assessing Human Norovirus Risk in Shellfish and Environmental Waters

    No full text
    International audienceHuman noroviruses (HuNoVs) are the main cause of shellfish-borne gastroenteritis outbreaks. In the absence of routine technical approaches allowing infectious particles to be detected, this viral pathogen is currently targeted by genome research, leading to difficult interpretations. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as fecal and viral contamination indicators in shellfish and water from a local harvesting area. FRNAPH were also used as microbial source tracking tools. Constraints imposed by detection limits are illustrated here by the detection of infectious FRNAPH in several samples in the absence of FRNAPH genomes. The opposite situation was also observed, likely explained by the persistence of the genomes being greater than infectivity. Similar considerations may be applied to HuNoVs, suggesting that HuNoV genome targeting is of limited relevance in assessing infectious risks. While FRNAPH did not provide any benefits compared to Escherichia coli as fecal pollution indicators in water, novel observations were made in shellfish: contrary to E. coli, a seasonal trend of infectious FRNAPH concentrations was observed. These concentrations were higher than those found in water, confirming bioaccumulation in shellfish. This study also underlines a relationship between the presence of HuNoV genomes and those of human-specific FRNAPH subgroup II (FRNAPH-II) in shellfish collected throughout Europe. Further research should be undertaken to evaluate FRNAPH potential as an indicator of the presence of infectious HuNoVs. To this end, shellfish involved in HuNoV-caused gastroenteritis outbreaks should be analyzed for the presence of infectious FRNAPH-II.IMPORTANCE This work provides new data about the use of F-specific RNA phages (FRNAPH) as a tool for evaluating fecal or viral contamination, especially in shellfish. In our case study, FRNAPH did not provide any benefits compared to E. coli as fecal pollution indicators in water but were found to be very useful in shellfish. Their concentrations in shellfish were higher than those found in the surrounding water, confirming bioaccumulation. This study also underlines a relationship between the presence of human norovirus genomes (HuNoVs) and those of FRNAPH subgroup II (FRNAPH-II). Considering that the two virus types have similar behaviors and since FRNAPH infectivity can be investigated, the specific detection of infectious FRNAPH-II could be regarded as an indication of the presence of infectious HuNoVs. The contribution of infectious human FRNAPH targeting for assessing the viral risk associated with HuNoVs in shellfish should thus be investigated

    Epstein-Barr virus infection and altered control of apoptotic pathways in posttransplant lymphoproliferative disorders.

    No full text
    Posttransplant lymphoproliferative disorders (PTLD) represent a spectrum of lymphoid diseases complicating the clinical course of transplant recipients. Most PTLD are Epstein-Barr virus (EBV) associated with viral latency type III. Several in vitro studies have revealed an interaction between EBV latency proteins and molecules of the apoptosis pathway. Data on human PTLD regarding an association between Bcl-2 family proteins and EBV are scarce. We analyzed 60 primary PTLD for expression of 8 anti- (Bcl-2, Bcl-XL, and Mcl-1) and proapoptotic proteins (Bak and Bax), the so-called BH3-only proteins (Bad, Bid, Bim, and Puma), as well as the apoptosis effector cleaved PARP by immunohistochemistry. Bim and cleaved PARP were both significantly (p = 0.001 and p = 5.251e-6) downregulated in EBV-positive compared to EBV-negative PTLD [Bim: 6/40 (15%), cleaved PARP: 10/43 (23%), vs. Bim: 13/16 (81%), cleaved PARP: 12/17 (71%)]. Additionally, we observed a tendency toward increased Bcl-2 protein expression (p = 0.24) in EBV-positive PTLD. Hence, we provide evidence of a distinct regulation of Bcl-2 family proteins in EBV-positive versus negative PTLD. The low-expression pattern of the proapoptotic proteins Bim and cleaved PARP together with the high-expression pattern of the antiapoptotic protein Bcl-2 by trend in EBV-positive tumor cells suggests disruption of the apoptotic pathway by EBV in PTLD, promoting survival signals in the host cell

    Relevance of F-Specific RNA Bacteriophages in Assessing Human Norovirus Risk in Shellfish and Environmental Waters

    No full text
    International audienceHuman noroviruses (HuNoVs) are the main cause of shellfish-borne gastroenteritis outbreaks. In the absence of routine technical approaches allowing infectious particles to be detected, this viral pathogen is currently targeted by genome research, leading to difficult interpretations. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as fecal and viral contamination indicators in shellfish and water from a local harvesting area. FRNAPH were also used as microbial source tracking tools. Constraints imposed by detection limits are illustrated here by the detection of infectious FRNAPH in several samples in the absence of FRNAPH genomes. The opposite situation was also observed, likely explained by the persistence of the genomes being greater than infectivity. Similar considerations may be applied to HuNoVs, suggesting that HuNoV genome targeting is of limited relevance in assessing infectious risks. While FRNAPH did not provide any benefits compared to Escherichia coli as fecal pollution indicators in water, novel observations were made in shellfish: contrary to E. coli, a seasonal trend of infectious FRNAPH concentrations was observed. These concentrations were higher than those found in water, confirming bioaccumulation in shellfish. This study also underlines a relationship between the presence of HuNoV genomes and those of human-specific FRNAPH subgroup II (FRNAPH-II) in shellfish collected throughout Europe. Further research should be undertaken to evaluate FRNAPH potential as an indicator of the presence of infectious HuNoVs. To this end, shellfish involved in HuNoV-caused gastroenteritis outbreaks should be analyzed for the presence of infectious FRNAPH-II.IMPORTANCE This work provides new data about the use of F-specific RNA phages (FRNAPH) as a tool for evaluating fecal or viral contamination, especially in shellfish. In our case study, FRNAPH did not provide any benefits compared to E. coli as fecal pollution indicators in water but were found to be very useful in shellfish. Their concentrations in shellfish were higher than those found in the surrounding water, confirming bioaccumulation. This study also underlines a relationship between the presence of human norovirus genomes (HuNoVs) and those of FRNAPH subgroup II (FRNAPH-II). Considering that the two virus types have similar behaviors and since FRNAPH infectivity can be investigated, the specific detection of infectious FRNAPH-II could be regarded as an indication of the presence of infectious HuNoVs. The contribution of infectious human FRNAPH targeting for assessing the viral risk associated with HuNoVs in shellfish should thus be investigated

    L’exception et la France contemporaine

    No full text
    La France est souvent représentée comme « le pays de la littérature ». C'est pourquoi, si le volume retient du cliché « l'exception française » la notion culturelle, il privilégie l'exception dans les formes littéraires. La perspective générale du volume fait apparaître les deux dominantes. Une première partie, « Histoire, imaginaire », développe la relation entre histoire et société, exception nationale et culture. La seconde, « Littérature », s'attache aux oeuvres modernes et contemporaines qui, jouant de la référence, nationale ou non, résistent à la règle et parfois la refondent. Aux points de vue de vingt chercheurs littéraires, de part et d'autre de l'Atlantique, répondent ceux de l'historien (Henry Rousso), de l'essayiste (Pascal Bruckner), du critique (Pierre Assouline) et du romancier (Philippe Vilain)
    corecore