1,355 research outputs found

    Efficient Charge Separation in 2D Janus van der Waals Structures with Build-in Electric Fields and Intrinsic p-n Doping

    Get PDF
    Janus MoSSe monolayers were recently synthesised by replacing S by Se on one side of MoS2_2 (or vice versa for MoSe2_2). Due to the different electronegativity of S and Se these structures carry a finite out-of-plane dipole moment. As we show here by means of density functional theory (DFT) calculations, this intrinsic dipole leads to the formation of built-in electric fields when the monolayers are stacked to form NN-layer structures. For sufficiently thin structures (N<4N<4) the dipoles add up and shift the vacuum level on the two sides of the film by N0.7\sim N \cdot 0.7 eV. However, for thicker films charge transfer occurs between the outermost layers forming atomically thin n- and p-doped electron gasses at the two surfaces. The doping concentration can be tuned between about 510125\cdot 10^{12} e/cm2^{2} and 210132\cdot 10^{13} e/cm2^{2} by varying the film thickness. The surface charges counteract the static dipoles leading to saturation of the vacuum level shift at around 2.2 eV for N>4N>4. Based on band structure calculations and the Mott-Wannier exciton model, we compute the energies of intra- and interlayer excitons as a function of film thickness suggesting that the Janus multilayer films are ideally suited for achieving ultrafast charge separation over atomic length scales without chemical doping or applied electric fields. Finally, we explore a number of other potentially synthesisable 2D Janus structures with different band gaps and internal dipole moments. Our results open new opportunities for ultrathin opto-electronic components such as tunnel diodes, photo-detectors, or solar cells

    A large magnetic storage ring for Bose-Einstein condensates

    Full text link
    Cold atomic clouds and Bose-Einstein condensates have been stored in a 10cm diameter vertically-oriented magnetic ring. An azimuthal magnetic field enables low-loss propagation of atomic clouds over a total distance of 2m, with a heating rate of less than 50nK/s. The vertical geometry was used to split an atomic cloud into two counter-rotating clouds which were recombined after one revolution. The system will be ideal for studying condensate collisions and ultimately Sagnac interferometry.Comment: 4 pages, 5 figure

    Option Values in Sequential Markets

    Full text link
    We consider competitive behaviour in sequential markets when current success or failure may affect the probability of future market opportunities. The analysis is conducted in a set up which may be interpreted as two private-value, sealed-bid, second-price sequential auctions. We demonstrate that whether agents price higher or lower than in the corresponding static context depends on the relative magnitudes of the 'winner's option value' and the 'loser's option value' of participating in the later market

    Laser frequency stabilization to a single ion

    Full text link
    A fundamental limit to the stability of a single-ion optical frequency standard is set by quantum noise in the measurement of the internal state of the ion. We discuss how the interrogation sequence and the processing of the atomic resonance signal can be optimized in order to obtain the highest possible stability under realistic experimental conditions. A servo algorithm is presented that stabilizes a laser frequency to the single-ion signal and that eliminates errors due to laser frequency drift. Numerical simulations of the servo characteristics are compared to experimental data from a frequency comparison of two single-ion standards based on a transition at 688 THz in 171Yb+. Experimentally, an instability sigma_y(100 s)=9*10^{-16} is obtained in the frequency difference between both standards.Comment: 15 pages, 5 figures, submitted to J. Phys.

    Detecting sterile neutrinos with KATRIN like experiments

    Full text link
    A sterile neutrino with mass in the eV range, mixing with the electron antineutrino, is allowed and possibly even preferred by cosmology and oscillation experiments. If such eV-mass neutrinos exist they provide a much better target for direct detection in beta decay experiments than the active neutrinos which are expected to have sub-eV masses. Their relatively high mass would allow for an easy separation from the primary decay signal in experiments such as KATRIN.Comment: 23 pages, 7 figures. References & Figures updated. Text reviewed and revised. Accepted for publication JCA

    Experimental Demonstration of Optimal Unambiguous State Discrimination

    Get PDF
    We present the first full demonstration of unambiguous state discrimination between non-orthogonal quantum states. Using a novel free space interferometer we have realised the optimum quantum measurement scheme for two non-orthogonal states of light, known as the Ivanovic-Dieks-Peres (IDP) measurement. We have for the first time gained access to all three possible outcomes of this measurement. All aspects of this generalised measurement scheme, including its superiority over a standard von Neumann measurement, have been demonstrated within 1.5% of the IDP predictions

    A note on light velocity anisotropy

    Get PDF
    It is proved that in experiments on or near the Earth, no anisotropy in the one-way velocity of light may be detected. The very accurate experiments which have been performed to detect such an effect are to be considered significant tests of both special relativity and the equivalence principleComment: 8 pages, LaTex, Gen. Relat. Grav. accepte

    Diagnostic accuracy of the neurological upper limb examination II: Relation to symptoms of patterns of findings

    Get PDF
    Background: In a sample of patients in clinical occupational medicine we have demonstrated that an upper limb neurological examination can reliably identify patterns of findings suggesting upper limb focal neuropathies. This further study aimed at approaching the diagnostic accuracy of the examination. Methods: 82 limbs were semi-quantitatively assessed by two blinded examiners ( strength in 14 individual muscles, sensibility in 7 homonymous territories, and mechanosensitivity at 10 locations along nerves). Based on the topography of nerves and their muscular and sensory innervation we defined 10 neurological patterns each suggesting a localized nerve affliction. Information on complaints ( pain, weakness and/or numbness/tingling) collected by others served as a reference for comparison. The relation between the presence of pattern(s) and complaints was assessed by kappa-statistics. Sensitivity, specificity, and positive/negative predictive values were calculated, and pretest odds were compared to post-test probability. Results: The two examiners identified pattern( s) suggesting focal neuropathy in 34/36 out of 38 symptomatic limbs, respectively (kappa = 0.70/0.75), with agreement in 28 limbs. Out of 44 non-symptomatic limbs the examiners agreed on absence of any pattern in 38 limbs. With concordance between the examiners with regard to the presence or absence of any pattern, the sensitivity, specificity, positive and negative predictive values were 0.73, 0.86, 0.93 and 0.90, respectively. While the pre-test odds for a limb to be symptomatic amounted to 0.46 the post-test probability was 0.81. For each examiner the post-test probability was 0.87 and 0.88, respectively. Conclusion: The improved diagnostic confidence is an indication of one aspect of construct validity of the physical examination. For determination of clinical feasibility of the examination further studies are required, most importantly 1) studies of validity by means of comparison with additional references and 2) studies of the potential benefit that can be attained from its use

    Low-loss criterion and effective area considerations for photonic crystal fibers

    Get PDF
    We study the class of endlessly single-mode all-silica photonic crystal fibers with a triangular air-hole cladding. We consider the sensibility to longitudinal nonuniformities and the consequences and limitations for realizing low-loss large-mode area photonic crystal fibers. We also discuss the dominating scattering mechanism and experimentally we confirm that both macro and micro-bending can be the limiting factor.Comment: Accepted for Journal of Optics A - Pure and Applied Optic
    corecore