3,778 research outputs found

    Energy Efficient Actuation with Variable Stiffness Actuators

    Get PDF
    Research effort in the field of variable stiffness actuators is steadily increasing, due to their wide range of possible applications and their advantages. In literature, var- ious control methods have been proposed, solving particular problems in human-robot and robot-environment interaction applications, in which the mechanical compliance introduced by variable stiffness actuators has been shown to be beneficial. In this work, we focus on achieving energy efficient actuation of robotic systems using variable stiffness actuators. In particular, we aim to exploit the energy storing properties of the internal elastic elements

    Human-like Walking with Compliant Legs

    Get PDF
    This work presents a novel approach to robotic bipedal walking. Based on the bipedal spring-mass model, which is known to closely describe human-like walking behavior, a robot has been designed that approaches the ideal model as closely as possible. The compliance of the springs is controllable by means of variable stiffness actuators. The controllable stiffness allows the gait to be stabilized against external disturbances

    Concentration fluctuations of large Stokes number particles in a one-dimensional random velocity field

    Full text link
    We analyze the behavior of an ensemble of inertial particles in a one-dimensional smooth Gaussian velocity field, in the limit of large inertia, but considering a finite correlation time for the random field. We derive in this limit a perturbative scheme for the calculation of the concentration correlation and of the particle relative velocity distribution, providing analytical expressions for the concentration fluctuation amplitude, its correlation length, and the modification in the particle pair relative velocity variance. The amplitude of the concentration fluctuations is characterized by slow decay at large inertia and a much larger correlation length than that of the random field. The fluctuation structure in velocity space is very different from predictions from short-time correlated random velocity fields, with only few particle pairs crossing at sufficiently small relative velocity to produce correlations. Concentration fluctuations are associated with depletion of the relative velocity variance of colliding particles.Comment: 8 pages, 1 figure, revtex

    Mechatronic design of the Twente humanoid head

    Get PDF
    This paper describes the mechatronic design of the Twente humanoid head, which has been realized in the purpose of having a research platform for human-machine interaction. The design features a fast, four degree of freedom neck, with long range of motion, and a vision system with three degrees of freedom, mimicking the eyes. To achieve fast target tracking, two degrees of freedom in the neck are combined in a differential drive, resulting in a low moving mass and the possibility to use powerful actuators. The performance of the neck has been optimized by minimizing backlash in the mechanisms, and using gravity compensation. The vision system is based on a saliency algorithm that uses the camera images to determine where the humanoid head should look at, i.e. the focus of attention computed according to biological studies. The motion control algorithm receives, as input, the output of the vision algorithm and controls the humanoid head to focus on and follow the target point. The control architecture exploits the redundancy of the system to show human-like motions while looking at a target. The head has a translucent plastic cover, onto which an internal LED system projects the mouth and the eyebrows, realizing human-like facial expressions

    Faint progenitors of luminous z ∼ 6 quasars: Why do not we see them?

    Get PDF
    Observational searches for faint active nuclei at z > 6 have been extremely elusive, with a few candidates whose high-z nature is still to be confirmed. Interpreting this lack of detections is crucial to improve our understanding of high-z supermassive black holes (SMBHs) formation and growth. In this work, we present a model for the emission of accreting black holes (BHs) in the X-ray band, taking into account super-Eddington accretion, which can be very common in gas-rich systems at high-z. We compute the spectral energy distribution for a sample of active galaxies simulated in a cosmological context, which represent the progenitors of a z ˜ 6 SMBH with MBH ˜ 109 M⊙. We find an average Compton-thick fraction of ˜45 per cent and large typical column densities (NH ≳ 1023 cm2). However, faint progenitors are still luminous enough to be detected in the X-ray band of current surveys. Even accounting for a maximum obscuration effect, the number of detectable BHs is reduced at most by a factor of 2. In our simulated sample, observations of faint quasars are mainly limited by their very low active fraction (fact ˜ 1 per cent), which is the result of short, supercritical growth episodes. We suggest that to detect high-z SMBHs progenitors, large area surveys with shallower sensitivities, such as COSMOS Legacy and XMM-LSS+XXL, are to be preferred with respect to deep surveys probing smaller fields, such as Chandra Deep Field South

    Nootropics use in the workplace. Psychiatric and ethical aftermath towards the new frontier of bioengineering

    Get PDF
    OBJECTIVE: The authors have sought to expound upon and shed a light on the rise of nootropics, which have gradually taken on a more and more relevant role in workplaces and academic settings. MATERIALS AND METHODS: Multidisciplinary databases have been delved into by entering the following keys: "nootropics", "cognitive enhancement", "workplace", "productivity", "ethics", "bioengineering". In addition, a broad-ranging search has been undertaken on institutional websites in order to identify relevant analysis and recommendations issued by international institutions and agencies. Papers and reports have been independently pored over by each author. This search strategy has led to the identification of 988 sources but only 64 were considered appropriate for the purposes of the paper after being selected by at least 3 of the authors, independently. RESULTS: The notion of an artificially enhanced work performance - carried out by the 'superworker' - is particularly noteworthy and resonates with the conception of contemporary work on so many different levels: the rising need and demands for higher degrees of flexibility and productivity on the job, the implications of a '24/7' society, where more and more services are available at any time, the ever greater emphasis on entrepreneurial spirit, individual self-reliance and self-improvement, and last but not least, the impact of an ageing society on economic standards and performance. CONCLUSIONS: Moreover, it is worth mentioning that human enhancement technologies will predictably and increasingly go hand in hand with gene editing, bioengineering, cybernetics and nanotechnology. Applications are virtually boundless, and may ultimately affect all human traits (physical strength, endurance, vision, intelligence and even personality and mood)

    Dynamic walking stability of the TUlip robot by means of the extrapolated center of mass

    Get PDF
    The TUlip robot was created to participate in the teensize league of Robocup. The TUlip robot is a bipedal robot intended for dynamic walking. It has six degrees of freedom for each leg: three for the hip, one for the knee and two for the ankle. This paper elaborates on the algorithm for the sideways control during gait. The algorithm uses the extrapolated center of mass (XcoM) to achieve limit cycle stability. The algorithm is tested in simulation using a linear inverted pendulum and, then, experimentally applied to the TUlip robot. The result is an adaptive behavior of the TUlip robot, promising for future application to legged robot stability

    Nonthermal hard X-ray excess in the Coma cluster: resolving the discrepancy between the results of different PDS data analyses

    Get PDF
    The detection of a nonthermal excess in the Coma cluster spectrum by two BeppoSAX observations analyzed with the XAS package (Fusco-Femiano et al.) has been disavowed by an analysis (Rossetti & Molendi) performed with a different software package (SAXDAS) for the extraction of the spectrum. To resolve this discrepancy we reanalyze the PDS data considering the same software used by Rossetti & Molendi. A correct selection of the data and the exclusion of contaminating sources in the background determination show that also the SAXDAS analysis reports a nonthermal excess with respect to the thermal emission at about the same confidence level of that obtained with the XAS package (~4.8sigma). Besides, we report the lack of the systematic errors investigated by Rossetti & Molendi and Nevalainen et al. taking into account the whole sample of the PDS observations off the Galactic plane, as already shown in our data analysis of Abell 2256 (Fusco-Femiano, Landi & Orlandini). All this eliminates any ambiguity and confirms the presence of a hard tail in the spectrum of the Coma cluster.Comment: 12 pages, 2 figures. Accepted for publication in ApJ Letter
    corecore