62 research outputs found

    Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents

    Get PDF
    Publisher Copyright: © 2021, The Author(s).The urgency of advancing green chemistry from labs and computers into the industries is well-known. The Deep Eutectic Solvents (DESs) are a promising category of novel green solvents which simultaneously have the best advantages of liquids and solids. Furthermore, they can be designed or engineered to have the characteristics desired for a given application. However, since they are rather new, there are no general models available to predict the properties of DESs without requiring other properties as input. This is particularly a setback when screening is required for feasibility studies, since a vast number of DESs are envisioned. For the first time, this study presents five group contribution (GC) and five atomic contribution (AC) models for densities, refractive indices, heat capacities, speeds of sound, and surface tensions of DESs. The models, developed using the most up-to-date databank of various types of DESs, simply decompose the molecular structure into a number of predefined groups or atoms. The resulting AARD% of densities, refractive indices, heat capacities, speeds of sound and surface tensions were, respectively, 1.44, 0.37, 3.26, 1.62, and 7.59% for the GC models, and 2.49, 1.03, 9.93, 4.52 and 7.80% for the AC models. Perhaps, even more importantly for designer solvents, is the predictive capability of the models, which was also shown to be highly reliable. Accordingly, very simple, yet highly accurate models are provided that are global for DESs and needless of any physical property information, making them useful predictive tools for a category of green solvents, which is only starting to show its potentials in green technology.publishersversionpublishe

    Viscosity investigations on the binary systems of (1 chcl:2 ethylene glycol) des and methanol or ethanol

    Get PDF
    Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.In this study, the viscosity behavior of two mixtures of Ethaline (1 ChCl:2 ethylene glycol) with either methanol or ethanol were investigated over the temperature range of 283.15–333.15 K at atmospheric pressure. The measured viscosities of neat Ethaline, methanol, and ethanol showed reliable agreement with the corresponding reported literature values. The mixture viscosities were modeled by an Arrhenius-like model to determine the behavior of viscosity with respect to temperature. The data were also modeled by the four well-known mixture viscosity models of Grunberg–Nissan, Jouyban–Acree, McAllister, and Preferential Solvation. All of the model results were reliable, with the Jouyban–Acree and Preferential Solvation models showing the most accurate agreement with the experimental measurements. The Jones–Dole viscosity model was also investigated for the measured viscosities, and by analyzing the results of this model, strong interactions among Ethaline and the alcohol molecules were proposed for both systems. As a final analysis, viscosity deviations of the investigated systems were calculated to study the deviations of the viscosity behaviors with respect to ideal behavior. Both systems showed negative viscosity deviations at all of the investigated temperatures, with the negative values tending towards zero, and hence more ideal behavior, with increasing temperatures. Moreover, in order to correlate the calculated viscosity deviations, the Redlich–Kister model was successfully used for both systems and at each investigated temperature.publishersversionpublishe

    A global model for the estimation of speeds of sound in deep eutectic solvents

    Get PDF
    ERC-2016-CoG 725,034 UID/QUI/50006/2019Deep eutectic solvents (DESs) are newly introduced green solvents that have attracted much attention regarding fundamentals and applications. Of the problems along the way of replacing a common solvent by a DES, is the lack of information on the thermophysical properties of DESs. This is even more accentuated by considering the dramatically growing number of DESs, being made by the combination of vast numbers of the constituting substances, and at their various molar ratios. The speed of sound is among the properties that can be used to estimate other important thermodynamic properties. In this work, a global and accurate model is proposed and used to estimate the speed of sound in 39 different DESs. This is the first general speed of sound model for DESs. The model does not require any thermodynamic properties other than the critical properties of the DESs, which are themselves calculated by group contribution methods, and in doing so, make the proposed method entirely independent of any experimental data as input. The results indicated that the average absolute relative deviation percentages (AARD%) of this model for 420 experimental data is only 5.4%. Accordingly, based on the achieved results, the proposed model can be used to predict the speeds of sound of DESs.publishersversionpublishe

    Investigation of carbon dioxide solubility in various families of deep eutectic solvents by the PC-SAFT EoS

    Get PDF
    Publisher Copyright: Copyright © 2022 Parvaneh, Haghbakhsh, Duarte and Raeissi.Having been introduced in 2003, Deep Eutectic Solvents (DESs) make up a most recent category of green solvents. Due to their unique characteristics, and also their tunable physical properties, DESs have shown high potentials for use in various applications. One of the investigated applications is CO2 absorption. The thermodynamic modeling of CO2 solubility in DESs has been pursued by a number of researchers to estimate the capacity and capability of DESs for such tasks. Among the advanced equations of state (EoSs), the Perturbed Chain-Statistical Associating Fluid Theory (PC-SAFT) is a well-known EoS. In this study, the performance of the PC-SAFT EoS for estimating CO2 solubility in various DESs, within wide ranges of temperatures and pressures, was investigated. A large data bank, including 2542 CO2 solubility data in 109 various-natured DESs was developed and used for this study. This is currently the most comprehensive study in the open literature on CO2 solubility in DESs using an EoS. For modeling, the DES was considered as a pseudo-component with a 2B association scheme. CO2 was considered as both an inert and a 2B-component and the results of each association scheme were compared. Considering the very challenging task of modeling a complex hydrogen bonding mixture with gases, the results of AARD% being lower than 10% for both of the investigated association schemes of CO2, showed that PC-SAFT is a suitable model for estimating CO2 solubilities in various DESs. Also, by proposing generalized correlations to predict the PC-SAFT parameters, covering different families of DESs, the developed model provides a global technique to estimate CO2 solubilities in new and upcoming DESs, avoiding the necessity of further experimental work. This can be most valuable for screening and feasibility studies to select potential DESs from the innumerable options available.publishersversionpublishe

    Energy conservation in absorption refrigeration cycles using DES as a new generation of green absorbents

    Get PDF
    ERC-2016-CoG 725,034 UID/QUI/50006/2019Deep eutectic solvents (DESs) are emerging green solvents with very unique characteristics. Their contribution to atmospheric pollution is negligible, and they can be "designed" for desired properties. In this study, the feasibility of applying DESs (Reline, Ethaline, or Glyceline) as absorbents in absorption refrigeration cycles was investigated. The sophisticated cubic-plus-association (CPA) equation of state, considering the strong intermolecular interactions of such complex systems, was used to estimate the thermodynamic properties. At a fixed set of base case operating conditions, the coefficients of performance were calculated to be 0.705, 0.713, and 0.716 for Reline/water, Ethaline/water, and Glyceline/water systems, respectively, while the corresponding mass flow rate ratios were 33.73, 11.53, and 16.06, respectively. Furthermore, the optimum operating conditions of each system were estimated. To verify the feasibility, results were compared to literature systems, including LiBr/water and various ionic liquid/water systems. The results indicate that DES/water working fluids have the potential to be used in such cycles. Since DESs have the characteristic to be tuned (designed) to desired properties, including their solvent power and their enthalpies of absorption, much further research needs to be done to propose new DESs with higher energy efficiencies.publishersversionpublishe

    Association between the number of coadministered P-glycoprotein inhibitors and serum digoxin levels in patients on therapeutic drug monitoring

    Get PDF
    BACKGROUND: The ABC transporter P-glycoprotein (P-gp) is recognized as a site for drug-drug interactions and provides a mechanistic explanation for clinically relevant pharmacokinetic interactions with digoxin. The question of whether several P-gp inhibitors may have additive effects has not yet been addressed. METHODS: We evaluated the effects on serum concentrations of digoxin (S-digoxin) in 618 patients undergoing therapeutic drug monitoring. P-gp inhibitors were classified as Class I, with a known effect on digoxin kinetics, or Class II, showing inhibition in vitro but no documented effect on digoxin kinetics in humans. Mean S-digoxin values were compared between groups of patients with different numbers of coadministered P-gp inhibitors by a univariate and a multivariate model, including the potential covariates age, sex, digoxin dose and total number of prescribed drugs. RESULTS: A large proportion (47%) of the digoxin patients undergoing therapeutic drug monitoring had one or more P-gp inhibitor prescribed. In both univariate and multivariate analysis, S-digoxin increased in a stepwise fashion according to the number of coadministered P-gp inhibitors (all P values < 0.01 compared with no P-gp inhibitor). In multivariate analysis, S-digoxin levels were 1.26 ± 0.04, 1.51 ± 0.05, 1.59 ± 0.08 and 2.00 ± 0.25 nmol/L for zero, one, two and three P-gp inhibitors, respectively. The results were even more pronounced when we analyzed only Class I P-gp inhibitors (1.65 ± 0.07 for one and 1.83 ± 0.07 nmol/L for two). CONCLUSIONS: Polypharmacy may lead to multiple drug-drug interactions at the same site, in this case P-gp. The S-digoxin levels increased in a stepwise fashion with an increasing number of coadministered P-gp inhibitors in patients taking P-gp inhibitors and digoxin concomitantly. As coadministration of digoxin and P-gp inhibitors is common, it is important to increase awareness about P-gp interactions among prescribing clinicians

    Large-scale ICU data sharing for global collaboration: the first 1633 critically ill COVID-19 patients in the Dutch Data Warehouse

    Get PDF

    Motivation types and mental health of UK hospitality workers.

    Get PDF
    The primary purposes of this study were to (i) assess levels of different types of work motivation in a sample of UK hospitality workers and make a cross-cultural comparison with Chinese counterparts and (ii) identify how work motivation and shame-based attitudes towards mental health explain the variance in mental health problems in UK hospitality workers. One hundred three UK hospitality workers completed self-report measures, and correlation and multiple regression analyses were conducted to identify significant relationships. Findings demonstrate that internal and external motivation levels were higher in UK versus Chinese hospitality workers. Furthermore, external motivation was more significantly associated with shame and mental health problems compared to internal motivation. Motivation accounted for 34–50% of mental health problems. This is the first study to explore the relationship between motivation, shame, and mental health in UK hospitality workers. Findings suggest that augmenting internal motivation may be a novel means of addressing mental health problems in this worker population.N/

    Aqueous mixture viscosities of phenolic deep eutectic solvents

    No full text
    ERC-2016-CoG 725034In this study, the aqueous mixture viscosities of two phenolic DESs, consisting of (1 ChCl: 3 phenol) and (1 ChCl: 4 phenol), were measured at atmospheric pressure over the temperature range of 293.15–333.15 K. According to the measured data, the values of viscosity deviations for the investigated aqueous systems were calculated to indicate deviating viscosity behavior with respect to ideality. Both aqueous systems showed negative viscosity deviations over the entire composition range and at all of the investigated temperatures. The Redlich-Kister model was applied to estimate the viscosity deviations of both aqueous systems at different compositions and temperatures, while the viscosity behavior, itself, was modeled by different literature models, consisting of the Grunberg-Nissan, Jouyban-Acree, McAllister, Preferential Solvation, and an Arrhenius-like viscosity model. All of the models presented satisfactory agreement, however the Preferential Solvation and the Jouyban-Acree models succeeded to achieve more reliable results as compared to the others. In addition to the mixture viscosity estimation models, the Jones-Dole viscosity model was applied to both of the aqueous systems to suggest the interactions in the mixture. By calculating and analyzing the values of the B-coefficients of this model, possibly stronger interactions among the DESs and water molecules in the mixture were suggested, as compared to the self-species interactions.authorsversionpublishe
    • …
    corecore