108,820 research outputs found

    A note on black hole entropy, area spectrum, and evaporation

    Full text link
    We argue that a process where a fuzzy space splits in two others can be used to explain the origin of the black hole entropy, and why a "generalized second law of thermodynamics" appears to hold in the presence of black holes. We reach the Bekenstein-Hawking formula from the count of the microstates of a black hole modeled by a fuzzy space. In this approach, a discrete area spectrum for the black hole, which becomes increasingly spaced as the black hole approaches the Planck scale, is obtained. We show that, as a consequence of this, the black hole radiation becomes less and less entropic as the black hole evaporates, in a way that some information about its initial state could be recovered.Comment: 4 pages, 2 figure

    Discriminating word senses with tourist walks in complex networks

    Full text link
    Patterns of topological arrangement are widely used for both animal and human brains in the learning process. Nevertheless, automatic learning techniques frequently overlook these patterns. In this paper, we apply a learning technique based on the structural organization of the data in the attribute space to the problem of discriminating the senses of 10 polysemous words. Using two types of characterization of meanings, namely semantical and topological approaches, we have observed significative accuracy rates in identifying the suitable meanings in both techniques. Most importantly, we have found that the characterization based on the deterministic tourist walk improves the disambiguation process when one compares with the discrimination achieved with traditional complex networks measurements such as assortativity and clustering coefficient. To our knowledge, this is the first time that such deterministic walk has been applied to such a kind of problem. Therefore, our finding suggests that the tourist walk characterization may be useful in other related applications

    Self-Adaptive Role-Based Access Control for Business Processes

    Get PDF
    © 2017 IEEE. We present an approach for dynamically reconfiguring the role-based access control (RBAC) of information systems running business processes, to protect them against insider threats. The new approach uses business process execution traces and stochastic model checking to establish confidence intervals for key measurable attributes of user behaviour, and thus to identify and adaptively demote users who misuse their access permissions maliciously or accidentally. We implemented and evaluated the approach and its policy specification formalism for a real IT support business process, showing their ability to express and apply a broad range of self-adaptive RBAC policies

    Solar type II radio bursts associated with CME expansions as shown by EUV waves

    Full text link
    We investigate the physical conditions of the sources of two metric Type-II bursts associated with CME expansions with the aim of verifying the relationship between the shocks and the CMEs, comparing the heights of the radio sources and the heights of the EUV waves associated with the CMEs. The heights of the EUV waves associated with the events were determined in relation to the wave fronts. The heights of the shocks were estimated by applying two different density models to the frequencies of the Type-II emissions and compared with the heights of the EUV waves. For the 13 June 2010 event, with band-splitting, the shock speed was estimated from the frequency drifts of the upper and lower branches of the harmonic lane, taking into account the H/F frequency ratio fH/fF = 2. Exponential fits on the intensity maxima of the branches revealed to be more consistent with the morphology of the spectrum of this event. For the 6 June 2012 event, with no band-splitting and with a clear fundamental lane on the spectrum, the shock speed was estimated directly from the frequency drift of the fundamental emission, determined by linear fit on the intensity maxima of the lane. For each event, the most appropriate density model was adopted to estimate the physical parameters of the radio source. The 13 June 2010 event presented a shock speed of 664-719 km/s, consistent with the average speed of the EUV wave fronts of 609 km/s. The 6 June 2012 event was related to a shock of speed of 211-461 km/s, also consistent with the average speed of the EUV wave fronts of 418 km/s. For both events, the heights of the EUV wave revealed to be compatible with the heights of the radio source, assuming a radial propagation of the shock.Comment: Accepted for publication in Astronomy and Astrophysic
    • …
    corecore