12 research outputs found

    Client preferences and acceptability for medical abortion and MVA as early pregnancy termination method in Northwest Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing access to safe abortion services is the most effective way of preventing the burden of unsafe abortion, which is achieved by increasing safe choices for pregnancy termination. Medical abortion for termination of early abortion is said to safe, effective, and acceptable to women in several countries. In Ethiopia, however, medical methods have, until recently, never been used. For this reason it is important to assess women's preferences and the acceptability of medical abortion and manual vacuum aspiration (MVA) in the early first trimester pregnancy termination and factors affecting acceptability of medical and MVA abortion services.</p> <p>Methods</p> <p>A prospective study was conducted in two hospitals and two clinics from March 2009 to November 2009. The study population consisted of 414 subjects over the age of 18 with intrauterine pregnancies of up to 63 days' estimated gestation. Of these 251 subjects received mifepristone and misoprostol and 159 subjects received MVA. Questionnaires regarding expectations and experiences were administered before the abortion and at the 2-week follow-up visit.</p> <p>Results</p> <p>The study groups were similar with respect to age, marital status, educational status, religion and ethnicity. Their mean age was about 23, majority in both group completed secondary education and about half were married. Place of residence and duration of pregnancy were associated with method choice. Subjects undergoing medical abortions reported significantly greater satisfaction than those undergoing surgical abortions (91.2% vs 82.4%; <it>P </it>< .001). Of those women who had medical abortion, (83.3%) would choose the method again if needed, and (77.4%) of those who had MVA would also choose the method again. Ninety four percent of women who had medical abortion and 86.8% of those who had MVA would recommend the method to their friends.</p> <p>Conclusions</p> <p>Women receiving medical abortion were more satisfied with their method and more likely to choose the same method again than were subjects undergoing surgical abortion. We conclude that medical abortion can be used widely as an alternative method for early pregnancy termination.</p

    Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum

    Get PDF
    Abstract Background Imbalances of gut microbiota composition are linked to a range of metabolic perturbations. In the present study, we examined the gut microbiota of women with gestational diabetes mellitus (GDM) and normoglycaemic pregnant women in late pregnancy and about 8 months postpartum. Methods Gut microbiota profiles of women with GDM (n = 50) and healthy (n = 157) pregnant women in the third trimester and 8 months postpartum were assessed by 16S rRNA gene amplicon sequencing of the V1-V2 region. Insulin and glucose homeostasis were evaluated by a 75 g 2-h oral glucose tolerance test during and after pregnancy. Results Gut microbiota of women with GDM was aberrant at multiple levels, including phylum and genus levels, compared with normoglycaemic pregnant women. Actinobacteria at phylum level and Collinsella, Rothia and Desulfovibrio at genus level had a higher abundance in the GDM cohort. Difference in abundance of 17 species-level operational taxonomic units (OTUs) during pregnancy was associated with GDM. After adjustment for pre-pregnancy body mass index (BMI), 5 of the 17 OTUs showed differential abundance in the GDM cohort compared with the normoglycaemic pregnant women with enrichment of species annotated to Faecalibacterium and Anaerotruncus and depletion of species annotated to Clostridium (sensu stricto) and to Veillonella. OTUs assigned to Akkermansia were associated with lower insulin sensitivity while Christensenella OTUs were associated with higher fasting plasma glucose concentration. OTU richness and Shannon index decreased from late pregnancy to postpartum regardless of metabolic status. About 8 months after delivery, the microbiota of women with previous GDM was still characterised by an aberrant composition. Thirteen OTUs were differentially abundant in women with previous GDM compared with women with previous normoglycaemic pregnancy. Conclusion GDM diagnosed in the third trimester of pregnancy is associated with a disrupted gut microbiota composition compared with normoglycaemic pregnant women, and 8 months after pregnancy, differences in the gut microbiota signatures are still detectable. The gut microbiota composition of women with GDM, both during and after pregnancy, resembles the aberrant microbiota composition reported in non-pregnant individuals with type 2 diabetes and associated intermediary metabolic traits

    Additional file 1: of Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum

    No full text
    Figure S1. Flow chart. Figure S2. Bristol stool scale and bowel movement frequency in women with and without GDM during pregnancy. Figure S3. Bristol stool scale and bowel movement frequency postpartum in women with and without previous GDM. Figure S4. Third trimester alpha diversity. Figure S5. Relationship between glycaemic traits and alpha diversity. Figure S6. Phylum level composition in pregnant women with gestational diabetes and with normal glucose regulation. Figure S7. Family-level composition in pregnant women with gestational diabetes and with normal glucose regulation. Figure S8. Genus-level composition in pregnant women with gestational diabetes and with normal glucose regulation. Figure S9. Bacterial operational taxonomic units associated with glycaemic traits during pregnancy. Figure S10. Bacterial operational taxonomic units associated with glycaemic traits during pregnancy adjusted for pre-pregnancy BMI. Figure S11. Frequency of pre-pregnancy overweight and obesity according to GDM status. Figure S12. Taxonomic biomarkers of overweight and obesity. Figure S13. Operational taxonomic units differentially abundant in pregnant women with normal and above normal pre-pregnancy body mass index. Figure S14. Operational taxonomic units differentially abundant in pregnant women with GDM and normal glucose regulation adjusted for pre-pregnancy BMI. Figure S15. Relationship between glycaemic traits and alpha diversity adjusted for pre-pregnancy BMI. (PDF 3075 kb

    Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum

    No full text
    Abstract Background Imbalances of gut microbiota composition are linked to a range of metabolic perturbations. In the present study, we examined the gut microbiota of women with gestational diabetes mellitus (GDM) and normoglycaemic pregnant women in late pregnancy and about 8 months postpartum. Methods Gut microbiota profiles of women with GDM (n = 50) and healthy (n = 157) pregnant women in the third trimester and 8 months postpartum were assessed by 16S rRNA gene amplicon sequencing of the V1-V2 region. Insulin and glucose homeostasis were evaluated by a 75 g 2-h oral glucose tolerance test during and after pregnancy. Results Gut microbiota of women with GDM was aberrant at multiple levels, including phylum and genus levels, compared with normoglycaemic pregnant women. Actinobacteria at phylum level and Collinsella, Rothia and Desulfovibrio at genus level had a higher abundance in the GDM cohort. Difference in abundance of 17 species-level operational taxonomic units (OTUs) during pregnancy was associated with GDM. After adjustment for pre-pregnancy body mass index (BMI), 5 of the 17 OTUs showed differential abundance in the GDM cohort compared with the normoglycaemic pregnant women with enrichment of species annotated to Faecalibacterium and Anaerotruncus and depletion of species annotated to Clostridium (sensu stricto) and to Veillonella. OTUs assigned to Akkermansia were associated with lower insulin sensitivity while Christensenella OTUs were associated with higher fasting plasma glucose concentration. OTU richness and Shannon index decreased from late pregnancy to postpartum regardless of metabolic status. About 8 months after delivery, the microbiota of women with previous GDM was still characterised by an aberrant composition. Thirteen OTUs were differentially abundant in women with previous GDM compared with women with previous normoglycaemic pregnancy. Conclusion GDM diagnosed in the third trimester of pregnancy is associated with a disrupted gut microbiota composition compared with normoglycaemic pregnant women, and 8 months after pregnancy, differences in the gut microbiota signatures are still detectable. The gut microbiota composition of women with GDM, both during and after pregnancy, resembles the aberrant microbiota composition reported in non-pregnant individuals with type 2 diabetes and associated intermediary metabolic traits

    Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum

    No full text
    Abstract Background Imbalances of gut microbiota composition are linked to a range of metabolic perturbations. In the present study, we examined the gut microbiota of women with gestational diabetes mellitus (GDM) and normoglycaemic pregnant women in late pregnancy and about 8 months postpartum. Methods Gut microbiota profiles of women with GDM (n = 50) and healthy (n = 157) pregnant women in the third trimester and 8 months postpartum were assessed by 16S rRNA gene amplicon sequencing of the V1-V2 region. Insulin and glucose homeostasis were evaluated by a 75 g 2-h oral glucose tolerance test during and after pregnancy. Results Gut microbiota of women with GDM was aberrant at multiple levels, including phylum and genus levels, compared with normoglycaemic pregnant women. Actinobacteria at phylum level and Collinsella, Rothia and Desulfovibrio at genus level had a higher abundance in the GDM cohort. Difference in abundance of 17 species-level operational taxonomic units (OTUs) during pregnancy was associated with GDM. After adjustment for pre-pregnancy body mass index (BMI), 5 of the 17 OTUs showed differential abundance in the GDM cohort compared with the normoglycaemic pregnant women with enrichment of species annotated to Faecalibacterium and Anaerotruncus and depletion of species annotated to Clostridium (sensu stricto) and to Veillonella. OTUs assigned to Akkermansia were associated with lower insulin sensitivity while Christensenella OTUs were associated with higher fasting plasma glucose concentration. OTU richness and Shannon index decreased from late pregnancy to postpartum regardless of metabolic status. About 8 months after delivery, the microbiota of women with previous GDM was still characterised by an aberrant composition. Thirteen OTUs were differentially abundant in women with previous GDM compared with women with previous normoglycaemic pregnancy. Conclusion GDM diagnosed in the third trimester of pregnancy is associated with a disrupted gut microbiota composition compared with normoglycaemic pregnant women, and 8 months after pregnancy, differences in the gut microbiota signatures are still detectable. The gut microbiota composition of women with GDM, both during and after pregnancy, resembles the aberrant microbiota composition reported in non-pregnant individuals with type 2 diabetes and associated intermediary metabolic traits
    corecore