754 research outputs found

    Influence of strain on magnetization and magnetoelectric effect in La0.7A0.3MnO3 / PMN-PT(001) (A = Sr; Ca)

    Full text link
    We investigate the influence of a well-defined reversible biaxial strain <=0.12 % on the magnetization (M) of epitaxial ferromagnetic manganite films. M has been recorded depending on temperature, strain and magnetic field in 20 - 50 nm thick films. This is accomplished by reversibly compressing the isotropic in-plane lattice parameter of the rhombohedral piezoelectric 0.72PMN-0.28PT (001) substrates by application of an electric field E <= 12 kV cm-1. The magnitude of the total variable in-plane strain has been derived. Strain-induced shifts of the ferromagnetic Curie temperature (Tc) of up to 19 K were found in La0.7Sr0.3MnO3 (LSMO) and La0.7Ca0.3MnO3 films and are quantitatively analysed for LSMO within a cubic model. The observed large magnetoelectric coupling coefficient alpha=mu0 dM/dE <= 6 10-8 s m-1 at ambient temperature results from the strain-induced M change in the magnetic-film-ferroelectric-substrate system. It corresponds to an enhancement of mu0 DeltaM <= 19 mT upon biaxial compression of 0.1 %. The extraordinary large alpha originates from the combination of three crucial properties: (i) the strong strain dependence of M in the ferromagnetic manganites, (ii) large piezo-strain of the PMN-PT substrates and (iii) effective elastic coupling at the film-substrate interface.Comment: 15 pages, 6 figures, 1 tabl

    Temperature dependence of piezoelectric properties of high- TC Bi (Mg1/2Ti1/2) O3 - PbTiO3

    Get PDF
    The temperature dependence of both polarization and electric-field induced strain was investigated for (1-x)Bi(Mg1/2Ti1/2)O-3-xPbTiO(3) (x=0.36, 0.37, and 0.38), with the morphotropic phase boundary located at x=0.37. Remanent polarization (P-r) and maximum polarization (P-max) of all compositions are enhanced with increasing temperature up to 175 degrees C, which is rationalized as improved domain switching due to reduced tetragonality (c/a). The hysteresis during unipolar electric cycling tends to decrease with increase in the fraction of tetragonal phase. Temperature dependent x-ray diffraction demonstrates that switched non-180 degrees domains are stable against thermal depoling above 200 degrees C, which indicates that the currently investigated materials are suitable for high temperature applications. This promising high-T-C piezoelectric is further discussed with reference to oxygen octahedron of the tilted R3c and untilted R3m space groups and the tolerance factor (t).open371

    Can an Electric Field Induce an Antiferroelectric Phase Out of a Ferroelectric Phase?

    Get PDF
    It has been widely accepted that electric fields favor the ferroelectric phase with parallel electric dipoles over the antiferroelectric phase. With detailed measurements in polycrystalline ceramics of Pb(0.99)Nb(0.02)[(Zr(0.57)Sn(0.43))(1-y)Ti(y)](0.98)O(3), we demonstrate in this Letter that electric fields can induce an antiferroelectric phase out of a ferroelectric phase, i.e., trigger an apparently unlikely ferroelectric-to-antiferroelectric phase transition. We suggest that it is caused by the volume contraction from the converse piezoelectric effect at the coercive field with a reversed polarity.open211
    corecore