42 research outputs found
New Integrable Sectors in Skyrme and 4-dimensional CP^n Model
The application of a weak integrability concept to the Skyrme and
models in 4 dimensions is investigated. A new integrable subsystem of the
Skyrme model, allowing also for non-holomorphic solutions, is derived. This
procedure can be applied to the massive Skyrme model, as well. Moreover, an
example of a family of chiral Lagrangians providing exact, finite energy
Skyrme-like solitons with arbitrary value of the topological charge, is given.
In the case of models a tower of integrable subsystems is obtained. In
particular, in (2+1) dimensions a one-to-one correspondence between the
standard integrable submodel and the BPS sector is proved. Additionally, it is
shown that weak integrable submodels allow also for non-BPS solutions.
Geometric as well as algebraic interpretations of the integrability conditions
are also given.Comment: 23 page
MAD3 AND MAD4 - NOVEL MAX-INTERACTING TRANSCRIPTIONAL REPRESSORS THAT SUPPRESS C-MYC DEPENDENT TRANSFORMATION AND ARE EXPRESSED DURING NEURAL AND EPIDERMAL DIFFERENTIATION
The basic helix-loop-helix-leucine zipper (bHLHZip) protein Max associates with members of the Myc family, as well as with the related proteins Mad (Mad1) and Mxi1, Whereas both Myc:Max and Mad:Max heterodimers bind related E-box sequences, Myc:Max activates transcription and promotes proliferation while Mad:Max represses transcription and suppresses Myc dependent transformation, Here we report the identification and characterization of two novel Mad1-and Mxi1-related proteins, Mad3 and Mad4. Mad3 and Mad4 interact with both Max and mSin3 and repress transcription from a promoter containing CACGTG binding sites, Using a rat embryo fibroblast transformation assay, we show that both Mad3 and Mad4 inhibit c-Myc dependent cell transformation, An examination of the expression patterns of all mad genes during murine embryogenesis reveals that mad1, mad3 and mad4 are expressed primarily in growth-arrested differentiating cells. mxi1 is also expressed in differentiating cells, but is co-expressed with either c-myc, N-myc, or both in proliferating cells of the developing central nervous system and the epidermis, In the developing central nervous system and epidermis, downregulation of myc genes occurs concomitant with upregulation of mad family genes, These expression patterns, together with the demonstrated ability of Mad family proteins to interfere with the proliferation promoting activities of Myc, suggest that the regulated expression of Myc and Mad family proteins function in a concerted fashion to regulate cell growth in differentiating tissues
Oesophageal adenocarcinoma is associated with a deregulation in the MYC/MAX/MAD network
Oesophageal adenocarcinoma, which arises from an acquired columnar lesion, Barrett's metaplasia, is rising in incidence more rapidly than any other cancer in the Western world. Elevated expression of c-MYC has been demonstrated in oesophageal adenocarcinoma; however, the expression of other members of the MYC/MAX/MAD network has not been addressed. The aims of this work were to characterise the expression of c-MYC, MAX and the MAD family in adenocarcinoma development and assess the effects of overexpression on cellular behaviour. mRNA expression in samples of Barrett's metaplasia and oesophageal adenocarcinoma were examined by qRT–PCR. Semi-quantitative immunohistochemistry and western blotting were used to examine cellular localisation and protein levels. Cellular proliferation and mRNA expression were determined in SEG1 cells overexpressing c-MYCER or MAD1 using a bromodeoxyuridine assay and qRT–PCR, respectively. Consistent with previous work expression of c-MYC was deregulated in oesophageal adenocarcinoma. Paradoxically, increased expression of putative c-MYC antagonists MAD1 and MXI1 was observed in tumour specimens. Overexpression of c-MYC and MAD proteins in SEG1 cells resulted in differential expression of MYC/MAX/MAD network members and reciprocal changes in proliferation. In conclusion, the expression patterns of c-MYC, MAX and the MAD family were shown to be deregulated in the oesophageal cancer model
Myc proteins in brain tumor development and maintenance
Myc proteins are often deregulated in human brain tumors, especially in embryonal tumors that affect children. Many observations have shown how alterations of these pleiotropic Myc transcription factors provide initiation, maintenance, or progression of tumors. This review will focus on the role of Myc family members (particularly c-myc and Mycn) in tumors like medulloblastoma and glioma and will further discuss how to target stabilization of these proteins for future brain tumor therapies
Ets-1 Confers Cranial Features on Neural Crest Delamination
Neural crest cells (NCC) have the particularity to invade the environment where they differentiate after separation from the neuroepithelium. This process, called delamination, is strikingly different between cranial and trunk NCCs. If signalings controlling slow trunk delamination start being deciphered, mechanisms leading to massive and rapid cranial outflow are poorly documented. Here, we show that the chick cranial NCCs delamination is the result of two events: a substantial cell mobilization and an epithelium to mesenchyme transition (EMT). We demonstrate that ets-1, a transcription factor specifically expressed in cranial NCCs, is responsible for the former event by recruiting massively cranial premigratory NCCs independently of the S-phase of the cell cycle and by leading the gathered cells to straddle the basal lamina. However, it does not promote the EMT process alone but can cooperate with snail-2 (previously called slug) to this event. Altogether, these data lead us to propose that ets-1 plays a pivotal role in conferring specific cephalic characteristics on NCC delamination
Mesoscale multilayer multitrack modeling of melt pool physics in laser powder bed fusion of lattice metal features
International audienceThis paper reports on the development of a mesoscale multiphysics numerical model for predicting the dimensions of melt pool zones in Laser Powder Bed Fusion process, in a multilayer and multitrack application dedicated to the manufacturing of lattice metal features. In such context, a clear need emerges to study laser-matter interaction regarding the persisting questions surrounding the comprehension of melt pool. An experimental campaign involving thin pillars made of the nickel-based superalloy IN718 is presented, highlighting the complexity introduced by the thin tracks superposition. Then, a continuous mesoscale numerical model, considering heat transfer, melt pool flow, and vaporization phenomena, and its extension to multilayer-multitrack simulation is detailed. Some discussions about the numerical approach and its ability to predict the global morphology and dimensions of melt pool zones and resulting tracks after solidification are proposed. Finally, comparisons between the experiments and the numerical model show good agreement, with a maximum relative error of 8 % observed for remelted zone depth. This study demonstrates the capability of the present approach to help in understanding the influence of process parameters on melt pool shape and, thereafter, to determine process parameters to optimize for lattice features building
Expression patterns of c-myb and of v-myb induced myeloid-1 (mim-1) gene during the development of the chick embryo
The v-myb oncogene of the acute avian leukemia virus E26 encodes a transcription factor that directly regulates the promyelocyte-specific mim-1 gene (Ness, S.A., Marknell, A. and Graf, T. Cell, 59, 1115–1125). We have investigated the relationship between the c-myb proto-oncogene and the transcription of the mim-1 gene both in vitro and in vivo. We demonstrate that the c-myb protein can transactivate the transcription of mim-1 in a transient transfection assay. In the chick embryo, we confirm that mim-1 is specifically expressed during granulopoiesis and we show that the expression of c-myb and mim-1 are perfectly correlated in the granulocytic spleen and pancreas. However we suggest that mim-1 is efficiently transcribed in the absence of c-myb in the yolk sac and in the promyelocytes at the onset of the colonization of the bursa of Fabricius. On the other hand c-myb transcripts detected in the early hemopoietic progenitor cells, in lymphoid cells and in proliferative epithelia are never associated with mim-1 transcription. We conclude that the granulocyte-specific mim-1 gene is regulated by c-myb-dependent and c-myb-independent mechanisms depending upon the environment in which granulocytic precursor cells differentiate.</jats:p
