10,782 research outputs found

    Thermodynamics of AdS Black Holes in Einstein-Scalar Gravity

    Get PDF
    We study the thermodynamics of nn-dimensional static asymptotically AdS black holes in Einstein gravity coupled to a scalar field with a potential admitting a stationary point with an AdS vacuum. Such black holes with non-trivial scalar hair can exist provided that the mass-squared of the scalar field is negative, and above the Breitenlohner-Freedman bound. We use the Wald procedure to derive the first law of thermodynamics for these black holes, showing how the scalar hair (or "charge") contributes non-trivially in the expression. We show in general that a black hole mass can be deduced by isolating an integrable contribution to the (non-integrable) variation of the Hamiltonian arising in the Wald construction, and that this is consistent with the mass calculated using the renormalised holographic stress tensor and also, in those cases where it is defined, with the mass calculated using the conformal method of Ashtekar, Magnon and Das. Similar arguments can also be given for the smooth solitonic solutions in these theories. Neither the black hole nor the soliton solutions can be constructed explicitly, and we carry out a numerical analysis to demonstrate their existence and to provide approximate checks on some of our thermodynamic results.Comment: 42 pages, 2 figures. Version published in JHEP, plus a "Note Added" expanding on our definition of "mass" via the first la

    Field-only integral equation method for time domain scattering of electromagnetic pulses

    Full text link
    The scattering of electromagnetic pulses is described using a non-singular boundary integral method to solve directly for the field components in the frequency domain, and Fourier transform is then used to obtain the complete space-time behavior. This approach is stable for wavelengths both small and large relative to characteristic length scales. Amplitudes and phases of field values can be obtained accurately on or near material boundaries. Local field enhancement effects due to multiple scattering of interest to applications in microphotonics are demonstrated.Comment: 7 pages, 9 figure

    Bound states of the Klein-Gordon equation for vector and scalar general Hulthen-type potentials in D-dimension

    Full text link
    We solve the Klein-Gordon equation in any DD-dimension for the scalar and vector general Hulth\'{e}n-type potentials with any ll by using an approximation scheme for the centrifugal potential. Nikiforov-Uvarov method is used in the calculations. We obtain the bound state energy eigenvalues and the corresponding eigenfunctions of spin-zero particles in terms of Jacobi polynomials. The eigenfunctions are physical and the energy eigenvalues are in good agreement with those results obtained by other methods for D=1 and 3 dimensions. Our results are valid for q=1q=1 value when l≠0l\neq 0 and for any qq value when l=0l=0 and D=1 or 3. The ss% -wave (l=0l=0) binding energies for a particle of rest mass m0=1m_{0}=1 are calculated for the three lower-lying states (n=0,1,2)(n=0,1,2) using pure vector and pure scalar potentials.Comment: 25 page
    • …
    corecore