98 research outputs found

    Adipose Tissue Deficiency and Chronic Inflammation in Diabetic Goto-Kakizaki Rats

    Get PDF
    Type 2 diabetes (T2DM) is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK) rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic inflammation in adipose tissue from these animals

    Type 2 diabetes - a matter of failing β-cell neogenesis? Clues from the GK rat model

    No full text
    Now that reduction in beta-cell mass has been clearly established in humans with type 2 diabetes mellitus (T2D), the debate focuses on the possible mechanisms responsible for decreased beta-cell number. Appropriate inbred rodent models are essential tools for this purpose. The information available from the Goto-Kakizaki (GK) rat, one of the best characterized animal models of spontaneous T2D, is reviewed in such a perspective. We propose that the defective beta-cell mass in the GK model reflects mostly a persistently decreased beta-cell neogenesis. The data discussed in this review are consistent with the notion that poor proliferation and/or survival of the endocrine precursor cells during GK foetal life will result in a decreased pool of endocrine precursors in the pancreas, and hence an impaired capacity of beta-cell neogenesis (either primary in the foetus or compensatory in the newborn and the adult). As we also demonstrated that beta-cell neogenesis can be pharmacologically reactivated in the GK model, our work supports, on a more prospective basis, the concept that facilitation of T2D treatment may be obtained through beta-cell mass expansion after stimulation of beta-cell regeneration/neogenesis in diabetic patients

    Higher-order nuclear organization in growth arrest of human mammary epithelial cells:a novel role for telomere-associated protein TIN2

    No full text
    Nuclear organization, such as the formation of specific nuclear subdomains, is generally thought to be involved in the control of cellular phenotype; however, there are relatively few specific examples of how mammalian nuclei organize during radical changes in phenotype, such as those occurring during differentiation and growth arrest. Using human mammary epithelial cells in which growth arrest is essential for morphological differentiation, we show that the arrest of cell proliferation is accompanied by a reorganization of the telomere-associated protein, TIN2, into one to three large nuclear subdomains. The large TIN2 domains do not contain telomeres and occur concomitant with the continued presence of TIN2 at telomeres. The TIN2 domains were sensitive to DNase, but not RNase, occurred frequently, but not exclusively near nucleoli, and overlapped often with dense domains containing heterochromatin protein 1γ. Expression of truncated forms of TIN2 simultaneously prevented the formation of TIN2 domains and relaxed the stringent morphogenesis-induced growth arrest in human mammary epithelial cells. Here we show that a novel extra-telomeric organization of TIN2 is associated with the control of cell proliferation and identify TIN2 as an important regulator of mammary epithelial differentiation
    corecore