1,415 research outputs found

    Triadic Measures on Graphs: The Power of Wedge Sampling

    Full text link
    Graphs are used to model interactions in a variety of contexts, and there is a growing need to quickly assess the structure of a graph. Some of the most useful graph metrics, especially those measuring social cohesion, are based on triangles. Despite the importance of these triadic measures, associated algorithms can be extremely expensive. We propose a new method based on wedge sampling. This versatile technique allows for the fast and accurate approximation of all current variants of clustering coefficients and enables rapid uniform sampling of the triangles of a graph. Our methods come with provable and practical time-approximation tradeoffs for all computations. We provide extensive results that show our methods are orders of magnitude faster than the state-of-the-art, while providing nearly the accuracy of full enumeration. Our results will enable more wide-scale adoption of triadic measures for analysis of extremely large graphs, as demonstrated on several real-world examples

    Wedge Sampling for Computing Clustering Coefficients and Triangle Counts on Large Graphs

    Full text link
    Graphs are used to model interactions in a variety of contexts, and there is a growing need to quickly assess the structure of such graphs. Some of the most useful graph metrics are based on triangles, such as those measuring social cohesion. Algorithms to compute them can be extremely expensive, even for moderately-sized graphs with only millions of edges. Previous work has considered node and edge sampling; in contrast, we consider wedge sampling, which provides faster and more accurate approximations than competing techniques. Additionally, wedge sampling enables estimation local clustering coefficients, degree-wise clustering coefficients, uniform triangle sampling, and directed triangle counts. Our methods come with provable and practical probabilistic error estimates for all computations. We provide extensive results that show our methods are both more accurate and faster than state-of-the-art alternatives.Comment: Full version of SDM 2013 paper "Triadic Measures on Graphs: The Power of Wedge Sampling" (arxiv:1202.5230

    A Scalable Null Model for Directed Graphs Matching All Degree Distributions: In, Out, and Reciprocal

    Full text link
    Degree distributions are arguably the most important property of real world networks. The classic edge configuration model or Chung-Lu model can generate an undirected graph with any desired degree distribution. This serves as a good null model to compare algorithms or perform experimental studies. Furthermore, there are scalable algorithms that implement these models and they are invaluable in the study of graphs. However, networks in the real-world are often directed, and have a significant proportion of reciprocal edges. A stronger relation exists between two nodes when they each point to one another (reciprocal edge) as compared to when only one points to the other (one-way edge). Despite their importance, reciprocal edges have been disregarded by most directed graph models. We propose a null model for directed graphs inspired by the Chung-Lu model that matches the in-, out-, and reciprocal-degree distributions of the real graphs. Our algorithm is scalable and requires O(m)O(m) random numbers to generate a graph with mm edges. We perform a series of experiments on real datasets and compare with existing graph models.Comment: Camera ready version for IEEE Workshop on Network Science; fixed some typos in tabl

    Newton's method for linear inequality systems

    Get PDF
    Cataloged from PDF version of article.We describe a modified Newton type algorithm for the solution of linear inequality systems in the sense of minimizing the l(2) norm of infeasibilities. Finite termination is proved, and numerical results are given. (C) 1998 Elsevier Science B.V
    corecore