5 research outputs found

    A comparative study of the radiation hardness of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector

    No full text
    The influence of radiation on the light transmittance of plastic scintillators was studied experimentally. The high optical transmittance property of plastic scintillators makes them essential in the effective functioning of the Tile calorimeter of the ATLAS detector at CERN. This significant role played by the scintillators makes this research imperative in the movement towards the upgrade of the tile calorimeter. The radiation damage of polyvinyl toluene (PVT) based plastic scintillators was studied, namely, EJ-200, EJ-208 and EJ-260, all manufactured and provided to us by ELJEN technology. In addition, in order to compare to scintillator brands actually in use at the ATLAS detector currently, two polystyrene (PS) based scintillators and an additional PVT based scintillator were also scrutinized in this study, namely, Dubna, Protvino and Bicron, respectively. All the samples were irradiated using a 6 MeV proton beam at different doses at iThemba LABS Gauteng. The radiation process was planned and mimicked by doing simulations using a SRIM program. In addition, transmission spectra for the irradiated and unirradiated samples of each grade were obtained, observed and analyzed

    Characterization of plastic scintillators using magnetic resonance techniques for the upgrade of the Tile Calorimeter in the ATLAS detector

    No full text
    In this study we look at radiation damage and its adverse effects on plastic scintillators housed within the Tile Calorimeter (TileCal) of the ATLAS detector. The study focuses on determining how the interaction of ionizing radiation with plastic scintillators effects their efficacy and desired properties such as high light output and fast decay time. Plastic scintillators form an integral part of the ATLAS trigger system and their optimal functionality is paramount to the success of ATLAS. Electron paramagnetic resonance (EPR) provides insight into the electronic structure of the plastics and can characterize the damage caused by ionizing radiation. Density functional theory (DFT) calculations will be performed in order to simulate the EPR signal. Preliminary EPR results investigate four different types of plastic scintillators. These include three polyvinyl-toluene based Eljen technologies: EJ200, EJ208 and EJ260, and one polystyrene based Dubna sample. It has been observed that the Dubna sample, identical on the current scintillator used in the ATLAS detector, undergoes more structural damage when compared to the Eljen samples
    corecore