704 research outputs found

    Recent Development: Immanuel v. Comptroller of Maryland: The Maryland Public Information Act\u27s Financial Information Exemption and the Uniform Disposition of Abandoned Property Act\u27s Publication Provision Do Not Allow For Disclosure of Information Beyond What is Explicitly Permitted

    Get PDF
    The Court of Appeals of Maryland held that information beyond the scope required under the Uniform Disposition of the Abandoned Property Act\u27s publication provision cannot be disclosed in response to a request for information made under the Maryland Public Information Act. Immanuel v. Comptroller of Maryland, 449 Md. 76, 97-98, 141 A.3d 181, 194 (2016). The court also held that the information required to bze published under the Abandoned Property Act may not be ordered by value, because such ordering would reveal personal financial information. Id. at 97, 141 A.3d at 194. Lastly, the court held that the intermediate appellate court properly required petitioner to modify his request to be consistent with the Maryland Public Information Act\u27s financial information exemption. Id. On November 3, 2011, Henry Immanuel ( Immanuel ) submitted a request for information held by the Comptroller of Maryland ( Comptroller ). The request sought the names and addresses of individuals who held the 5,000 largest unclaimed abandoned property accounts, ordered by value. The Comptroller denied Immanuel\u27s request, and determined that the information fell under the Maryland Public Information Act\u27s ( MPIA ) financial information exemption

    Recent Development: Toms v. Calvary Assembly of God, Inc.: Noise Resulting From Legally Permissable Fireworks Does Not Constitute an Abnormally Dangerous Activity, and the Application of Strict Liability is Inappropriate.

    Get PDF
    The Court of Appeals of Maryland held that noise emitted from a lawful fireworks display did not constitute an abnormally dangerous activity; therefore, the parties were not subject to strict liability. Toms v. Calvary Assembly of God, Inc., 446 Md. 543, 569, 132 A.3d 866, 881 (2016)

    Unconditional two-mode squeezing of separated atomic ensembles

    Full text link
    We propose schemes for the unconditional preparation of a two-mode squeezed state of effective bosonic modes realized in a pair of atomic ensembles interacting collectively with optical cavity and laser fields. The scheme uses Raman transitions between stable atomic ground states and under ideal conditions produces pure entangled states in the steady state. The scheme works both for ensembles confined within a single cavity and for ensembles confined in separate, cascaded cavities.Comment: 4 pages, 2 figure

    Coupling of effective one-dimensional two-level atoms to squeezed light

    Full text link
    A cavity QED system is analyzed which duplicates the dynamics of a two-level atom in free space interacting exclusively with broadband squeezed light. We consider atoms in a three or four-level Lambda-configuration coupled to a high-finesse optical cavity which is driven by a squeezed light field. Raman transitions are induced between a pair of stable atomic ground states via the squeezed cavity mode and coherent driving fields. An analysis of the reduced master equation for the atomic ground states shows that a three-level atomic system has insufficient parameter flexibility to act as an effective two-level atom interacting exclusively with a squeezed reservoir. However, the inclusion of a fourth atomic level, coupled dispersively to one of the two ground states by an auxiliary laser field, introduces an extra degree of freedom and enables the desired interaction to be realised. As a means of detecting the reduced quadrature decay rate of the effective two-level system, we examine the transmission spectrum of a weak coherent probe field incident upon the cavity

    Mimicking a Squeezed Bath Interaction: Quantum Reservoir Engineering with Atoms

    Get PDF
    The interaction of an atomic two-level system and a squeezed vacuum leads to interesting novel effects in atomic dynamics, including line narrowing in resonance fluorescence and absorption spectra, and a suppressed (enhanced) decay of the in-phase and out-of phase component of the atomic polarization. On the experimental side these predictions have so far eluded observation, essentially due to the difficulty of embedding atoms in a 4 pi squeezed vacuum. In this paper we show how to ``engineer'' a squeezed-bath-type interaction for an effective two-level system. In the simplest example, our two-level atom is represented by the two ground levels of an atom with angular momentum J=1/2 -> J=1/2 transition (a four level system) which is driven by (weak) laser fields and coupled to the vacuum reservoir of radiation modes. Interference between the spontaneous emission channels in optical pumping leads to a squeezed bath type coupling, and thus to symmetry breaking of decay on the Bloch sphere. With this system it should be possible to observe the effects predicted in the context of squeezed bath - atom interactions. The laser parameters allow one to choose properties of the squeezed bath interaction, such as the (effective) photon number expectation number N and the squeezing phase phi. We present results of a detailed analytical and numerical study.Comment: 24 pages, 8 figure

    Implementation of quantum gates and preparation of entangled states in cavity QED with cold trapped ions

    Get PDF
    We propose a scheme to perform basic gates of quantum computing and prepare entangled states in a system with cold trapped ions located in a single mode optical cavity. General quantum computing can be made with both motional state of the trapped ion and cavity state being qubits. We can also generate different kinds of entangled states in such a system without state reduction, and can transfer quantum states from the ion in one trap to the ion in another trap. Experimental requirement for achieving our scheme is discussed.Comment: To appear in J. Opt.

    de-Broglie Wave-Front Engineering

    Get PDF
    We propose a simple method for the deterministic generation of an arbitrary continuous quantum state of the center-of-mass of an atom. The method's spatial resolution gradually increases with the interaction time with no apparent fundamental limitations. Such de-Broglie Wave-Front Engineering of the atomic density can find applications in Atom Lithography, and we discuss possible implementations of our scheme in atomic beam experiments.Comment: The figures' quality was improved, the text remains intact. 5 pages, 3 figures; submitted to PR

    Counter-Intuitive Vacuum-Stimulated Raman Scattering

    Get PDF
    Vacuum-stimulated Raman scattering in strongly coupled atom-cavity systems allows one to generate free-running single photon pulses on demand. Most properties of the emitted photons are well defined, provided spontaneous emission processes do not contribute. Therefore, electronic excitation of the atom must not occur, which is assured for a system adiabatically following a dark state during the photon-generation process. We experimentally investigate the conditions that must be met for adiabatic following in a time-of-flight driven system, with atoms passing through a cavity and a pump beam oriented transverse to the cavity axis. From our results, we infer the optimal intensity and relative pump-beam position with respect to the cavity axis.Comment: 4 pages, 4 figure

    Generation of two-mode nonclassical states and a quantum phase gate operation in trapped ion cavity QED

    Full text link
    We propose a scheme to generate nonclassical states of a quantum system, which is composed of the one-dimensional trapped ion motion and a single cavity field mode. We show that two-mode SU(2) Schr\"odinger-cat states, entangled coherent states, two-mode squeezed vacuum states and their superposition can be generated. If the vibration mode and the cavity mode are used to represent separately a qubit, a quantum phase gate can be implemented.Comment: to appear in PR
    • …
    corecore