625 research outputs found

    Evaluation of four different strategies to characterize plasma membrane proteins from banana roots

    Get PDF
    Plasma membrane proteins constitute a very important class of proteins. They are involved in the transmission of external signals to the interior of the cell and selective transport of water, nutrients and ions across the plasma membrane. However, the study of plasma membrane proteins is challenging because of their poor solubility in aqueous media and low relative abundance. In this work, we evaluated four different strategies for the characterization of plasma membrane proteins from banana roots: (i) the aqueous-polymer two-phase system technique (ATPS) coupled to gelelectrophoresis (gel-based), and (ii) ATPS coupled to LC-MS/MS (gel free), (iii) a microsomal fraction and (iv) a full proteome, both coupled to LC-MS/ MS. Our results show that the gel-based strategy is useful for protein visualization but has major limitations in terms of time reproducibility and efficiency. From the gel-free strategies, the microsomal-based strategy allowed the highest number of plasma membrane proteins to be identified, followed by the full proteome strategy and by the ATPS based strategy. The high yield of plasma membrane proteins provided by the microsomal fraction can be explained by the enrichment of membrane proteins in this fraction and the high throughput of the gel-free approach combined with the usage of a fast high-resolution mass spectrometer for the identification of proteins

    Somatic embryogenesis in coffee: the evolution of biotechnology and the integration of omics technologies offer great opportunities

    Get PDF
    One of the most important crops cultivated around the world is coffee. There are two main cultivated species, Coffea arabica and C. canephora. Both species are difficult to improve through conventional breeding, taking at least 20 years to produce a new cultivar. Biotechnological tools such as genetic transformation, micropropagation and somatic embryogenesis (SE) have been extensively studied in order to provide practical results for coffee improvement. While genetic transformation got many attention in the past and is booming with the CRISPR technology, micropropagation and SE are still the major bottle neck and urgently need more attention. The methodologies to induce SE and the further development of the embryos are genotype-dependent, what leads to an almost empirical development of specific protocols for each cultivar or clone. This is a serious limitation and excludes a general comprehensive understanding of the process as a whole. The aim of this review is to provide an overview of which achievements and molecular insights have been gained in (coffee) somatic embryogenesis and encourage researchers to invest further in the in vitro technology and combine it with the latest omics techniques (genomics, transcriptomics, proteomics, metabolomics, and phenomics). We conclude that the evolution of biotechnology and the integration of omics technologies offer great opportunities to (i) optimize the production process of SE and the subsequent conversion into rooted plantlets and (ii) to screen for possible somaclonal variation. However, currently the usage of the latest biotechnology did not pass the stage beyond proof of potential and needs to further improve

    A DISCUSSION OF SOME ECOLOGICAL FACTORS AFFECTING COCCIDENCYRTUS MALLOI BLANCHARD (HYMENOPTERA: ENCYRTIDAE) AS A PARASITOID OF DIASPIDID SCALES UNDER GLASS IN FRANCE

    Get PDF
    A DISCUSSION OF SOME ECOLOGICAL FACTORS AFFECTING COCCIDENCYRTUS MALLOI BLANCHARD (HYMENOPTERA, ENCYRTIDAE) AS A PARASITOID OF DIASPIDID SCALES UNDER GLASS IN FRANCE. The encyrtid parasitoid Coccidencyrtus malloi Blanchard has been recorded in orchid glasshouses of south-eastern France where its diaspidid host, Diaspis boisduvalii Signoret (Hemiptera, Diaspididae), is sometimes a pest of ornamentals. In order to study its biology and potential as a biological control agent, it was cultured on a bromeliad and released into several hot temperate commercial houses. It was found to have a very restricted distribution which appeared to be determined by deep shade and very high humidities. Key words: Argentina, Boisduval scale, parasitoid development, thelytokous parthenogenesis, Diaspis bromeliae, D, coccois, Laeliocattleya, Vriesea, Aechmea, Cattleya, Citrullus, Cymbidium, Coccos, Dendrobium, Neodypsis, Hohenbergia

    A STUDY OF TWO PLAGIOMERUS SPECIES (HYMENOPTERA: ENCYRTIDAE) PARASITISING DIASPIDID SCALES (COCCOIDEA) IN GLASSHOUSES IN FRANCE

    Get PDF
    A STUDY OF TWO PLAGIOMERUS SPECIES (HYMENOPTERA: ENCYRTIDAE) PARASITISING DIASPIDID SCALES (COCCOIDEA) IN GLASSHOUSES IN FRANCE. Plagiomerus diaspidis Crawford was imported from Tenerife (Canary Islands, Spain) and released experimentally as a biological control agent against Diaspis echinocacti (Bouché) (Hemiptera, Diaspididae) within a cactus glasshouse in south-eastern France but it failed to provide control, apparently due to very weak powers of dispersal. A second undescribed Plagiomerus was found in a wet tropical greenhouse in the same region of France and was thought to be a potential biocontrol agent of Diaspididae. It was found to parasitise the three Diaspis species (D. boisduvalii Signoret, D. coccois (Lichtenstein) and D. bromeliae (Kerner)) present in the greenhouse, although it failed to control them. Both parasitoid species reproduced by thelytokous parthenogenesis. Key words: development, Boisduval scale, preferred environments, USA, Mexico, Azerbaidjan, Opuntia, Strelitzia, Calanthe, palm

    Elucidation of the compatible interaction between banana and Meloidogyne incognita via high-throughput proteome profiling

    Get PDF
    With a diverse host range, Meloidogyne incognita (root-knot nematode) is listed as one of the most economically important obligate parasites of agriculture. This nematode species establishes permanent feeding sites in plant root systems soon after infestation. A compatible host-nematode interaction triggers a cascade of morphological and physiological process disruptions of the host, leading to pathogenesis. Such disruption is reflected by altered gene expression in affected cells, detectable using molecular approaches. We employed a high-throughput proteomics approach to elucidate the events involved in a compatible banana- M. incognita interaction. This study serves as the first crucial step in developing natural banana resistance for the purpose of biological-based nematode management programme. We successfully profiled 114 Grand naine root proteins involved in the interaction with M. incognita at the 30th- and 60th- day after inoculation (dai). The abundance of proteins involved in fundamental biological processes, cellular component organisation and stress responses were significantly altered in inoculated root samples. In addition, the abundance of proteins in pathways associated with defence and giant cell maintenance in plants such as phenylpropanoid biosynthesis, glycolysis and citrate cycle were also implicated by the infestation

    New interleukin-15 superagonist (IL-15SA) significantly enhances graft-versus-tumor activity.

    Get PDF
    Interleukin-15 (IL-15) is a potent cytokine that increases CD8+ T and NK cell numbers and function in experimental models. However, obstacles remain in using IL-15 therapeutically, specifically its low potency and short in vivo half-life. To help overcome this, a new IL-15 superagonist complex comprised of an IL-15N72D mutation and IL-15RαSu/Fc fusion (IL-15SA, also known as ALT-803) was developed. IL-15SA exhibits a significantly longer serum half-life and increased in vivo activity against various tumors. Herein, we evaluated the effects of IL-15SA in recipients of allogeneic hematopoietic stem cell transplantation. Weekly administration of IL-15SA to transplant recipients significantly increased the number of CD8+ T cells (specifically CD44+ memory/activated phenotype) and NK cells. Intracellular IFN-γ and TNF-α secretion by CD8+ T cells increased in the IL-15SA-treated group. IL-15SA also upregulated NKG2D expression on CD8+ T cells. Moreover, IL-15SA enhanced proliferation and cytokine secretion of adoptively transferred CFSE-labeled T cells in syngeneic and allogeneic models by specifically stimulating the slowly proliferative and nonproliferative cells into actively proliferating cells.We then evaluated IL-15SA\u27s effects on anti-tumor activity against murine mastocytoma (P815) and murine B cell lymphoma (A20). IL-15SA enhanced graft-versus-tumor (GVT) activity in these tumors following T cell infusion. Interestingly, IL-15 SA administration provided GVT activity against A20 lymphoma cells in the murine donor leukocyte infusion (DLI) model without increasing graft versus host disease. In conclusion, IL-15SA could be a highly potent T- cell lymphoid growth factor and novel immunotherapeutic agent to complement stem cell transplantation and adoptive immunotherapy

    Constraining X-ray variability of the blazar 3C 273 using XMM-Newton observations over two decades

    Full text link
    Blazars exhibit relentless variability across diverse spatial and temporal frequencies. The study of long- and short-term variability properties observed in the X-ray band provides insights into the inner workings of the central engine. In this work, we present timing and spectral analyses of the blazar 3C 273 using the X-ray observations from the XMM-Newton\textit{XMM-Newton} telescope covering the period from 2000 to 2020. The methods of timing analyses include estimation of fractional variability, long- and short-term flux distribution, rms-flux relation, and power spectral density analysis. The spectral analysis include estimating a model independent flux hardness ratio and fitting the observations with multiplicative and additive spectral models such as \textit{power-law}, \textit{log-parabola}, \textit{broken power-law}, and \textit{black body}. The \textit{black body} represents the thermal emission from the accretion disk, while the other models represent the possible energy distributions of the particles emitting synchrotron radiation in the jet. During the past two decades, the source flux changed by of a factor of three, with a considerable fractional variability of 27\%. However, the intraday variation was found to be moderate. Flux distributions of the individual observations were consistent with a normal or log-normal distribution, while the overall flux distribution including entire observations appear to be rather multi-modal and of a complex shape. The spectral analyses indicate that \textit{log-parabola} added with a \textit{black body} gives the best fit for most of the observations. The results indicate a complex scenario in which the variability can be attributed to the intricate interaction between the disk/corona system and the jet.Comment: 18 pages, 8 figures, ApJ accepte
    corecore