6,557 research outputs found

    Design Modifications for a Small, Affordable Low Intensity Focused Ultrasound Device

    Get PDF
    Depression is a prevalent and serious medical illness, and while there are antidepressant drugs to mitigate depressive symptoms, 10 - 30% of patients either do not respond or develop a tolerance to these medications. Literature supports that there is an interrelation between the inflammatory response and treatment-resistant depression. A promising method to tackle depressive symptoms is to block the inflammatory signaling pathway with vagus nerve stimulation (VNS), reducing pro-inflammatory cytokine levels. Although electrical VNS devices exist, they are invasive, expensive, and have side effects including voice alteration, dyspnea, and cough. Low intensity focused ultrasound (LIFU) is a promising method that can stimulate a desired region noninvasively and without long term negative side effects. Nonetheless, the existing LIFU devices can be expensive, cumbersome, and large. The Center of Implantable Devices designed a prototype called the SonicNode that incorporates a transducer, matching network, and an amplifier into a 50 mm x 57 mm x 76 mm package. We modified the transducer head and created an intensity map of the focal region to demonstrate the improved performance of the device. The SonicNode and LIFU technology can be employed for long term, noninvasive treatment of a variety of neurological disorders

    Treatment and Prevention of Opioid Use Disorder: Challenges and Opportunities

    Get PDF
    Treatment for opioid use disorder in the United States evolved in response to changing federal policy and advances in science. Inpatient care began in 1935 with the US Public Health Service Hospitals in Lexington, Kentucky, and Fort Worth, Texas. Outpatient clinics emerged in the 1960s to provide aftercare. Research advances led to opioid agonist and opioid antagonist therapies. When patients complete opioid withdrawal, return to use is often rapid and frequently deadly. US and international authorities recommend opioid agonist therapy (i.e., methadone or buprenorphine). Opioid antagonist therapy (i.e., extended-release naltrexone) may also inhibit return to use. Prevention efforts emphasize public and prescriber education, use of prescription drug monitoring programs, and safe medication disposal options. Overdose education and naloxone distribution promote access to rescue medication and reduce opioid overdose fatalities. Opioid use disorder prevention and treatment must embrace evidence-based care and integrate with physical and mental health care

    The OLYMPUS Internal Hydrogen Target

    Get PDF
    An internal hydrogen target system was developed for the OLYMPUS experiment at DESY, in Hamburg, Germany. The target consisted of a long, thin-walled, tubular cell within an aluminum scattering chamber. Hydrogen entered at the center of the cell and exited through the ends, where it was removed from the beamline by a multistage pumping system. A cryogenic coldhead cooled the target cell to counteract heating from the beam and increase the density of hydrogen in the target. A fixed collimator protected the cell from synchrotron radiation and the beam halo. A series of wakefield suppressors reduced heating from beam wakefields. The target system was installed within the DORIS storage ring and was successfully operated during the course of the OLYMPUS experiment in 2012. Information on the design, fabrication, and performance of the target system is reported.Comment: 9 pages, 13 figure

    Salt marsh pond biogeochemistry changes hourly-to-yearly but does not scale with dimensions or geospatial position

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 125(10), (2020): e2020JG005664, doi:10.1029/2020JG005664.Shallow ponds are expanding in many salt marshes with potential impacts on ecosystem functioning. Determining how pond characteristics change over time and scale with physical dimensions and other spatial predictors could facilitate incorporation of ponds into projections of ecosystem change. We evaluated scaling relationships across six differently sized ponds in three regions of the high marshes within the Plum Island Ecosystems‐Long Term Ecological Research site (MA, USA). We further characterized diel fluctuations in surface water chemistry in two ponds to understand short‐term processes that affect emergent properties (e.g., habitat suitability). Primary producers drove oxygen levels to supersaturation during the day, while nighttime respiration resulted in hypoxic to anoxic conditions. Diel swings in oxygen were mirrored by pH and resulted in successive shifts in redox‐sensitive metabolisms, as indicated by nitrate consumption at dusk followed by peaks in ammonium and then sulfide overnight. Abundances of macroalgae and Ruppia maritima correlated with whole‐pond oxygen metabolism rates, but not with surface area (SA), volume (V), or SA:V. Moreover, there were no clear patterns in primary producer abundances, surface water chemistry, or pond metabolism rates across marsh regions supplied by different tidal creeks or that differed in distance to upland borders or creekbanks. Comparisons with data from 2 years prior demonstrate that plant communities and biogeochemical processes are not in steady state. Factors contributing to variability between ponds and years are unclear but likely include infrequent tidal exchange. Temporal and spatial variability and the absence of scaling relationships complicate the integration of high marsh ponds into ecosystem biogeochemical models.Thanks to S. McNichol, S. Jayne, E. Neel, and PIE‐LTER (NSF‐OCE1238212) for field assistance; I. Forbrich for meteorological data (Giblin & Forbrich, 2018); J. Jennings for dissolved nutrient analyses; J. Seewald for ion chromatograph access; and G. Mariotti for elevation data. C. Wilson and an anonymous reviewer provided comments that greatly improved our manuscript. A. C. S. was supported by NSF (OCE1233678), NOAA (NA14NOS4190145), and Sea Grant (NA14OAR4170104) awards, and A. D. by the MIT Undergraduate Research Opportunities Program.2021-03-1

    Clusters in the Luminous Giant HII Regions in M101

    Full text link
    (Abridged) We have obtained HST WFPC2 observations of three very luminous but morphologically different giant HII regions (GHRs) in M101, NGC5461, NGC5462, and NGC5471, in order to study cluster formation in GHRs. The measured (M_F547M - M_F675W) colors and M_F547M magnitudes are used to determine the ages and masses of the cluster candidates with M_F547M <= -9.0. NGC5461 is dominated by a very luminous core, and has been suggested to host a super-star cluster (SSC). Our observations show that it contains three R136-class clusters superposed on a bright stellar background in a small region. This tight group of clusters may dynamically evolve into an SSC in the future, and may appear unresolved and be identified as an SSC at large distances, but at present NGC5461 has no SSCs. NGC5462 has loosely distributed HII regions and clusters without a prominent core. It has the largest number of cluster candidates among the three GHRs, but most of them are faint and older than 10 Myr. NGC5471 has multiple bright HII regions, and contains a large number of faint clusters younger than 5 Myr. Two of the clusters in NGC5471 are older than R136, but just as luminous; they may be the most massive clusters in the three GHRs. The fraction of stars formed in massive clusters is estimated from the clusters' contribution to the total stellar continuum emission and a comparison of the ionizing power of the clusters to the ionizing requirement of the associated HII regions. Both estimates show that <~ 50% of massive stars are formed in massive clusters. The cluster luminosity functions (CLFs) of the three GHRs show different slopes. NGC5462 has the steepest CLF and the most loosely distributed interstellar gas, qualitatively consistent with the hypothesis that massive clusters are formed in high-pressure interstellar environments.Comment: 36 pages (figures not included), 16 figures (3 of them are color figures). Figures are in JPEG or GIF format with a lower resolution due to the size limit of the file. For a higher resolution version of the paper, please download from http://www.astro.uiuc.edu/~c-chen/clusters.pdf. accepted for ApJ (scheduled for the ApJ 2005 February issue
    • 

    corecore