431 research outputs found
Drastic Change of Magnetic Phase Diagram in Doped Quantum Antiferromagnet TlCuMgCl
TlCuCl is a coupled spin dimer system, which has a singlet ground state
with an excitation gap of = 5.5 T.
TlCuMgCl doped with nonmagnetic Mg ions undergoes
impurity-induced magnetic ordering. Because triplet excitation with a finite
gap still remains, this doped system can also undergo magnetic-field-induced
magnetic ordering. By specific heat measurements and neutron scattering
experiments under a magnetic field, we investigated the phase diagram in
TlCuMgCl with , and found that impurity- and
field-induced ordered phases are the same. The gapped spin liquid state
observed in pure TlCuCl is completely wiped out by the small amount of
doping.Comment: 9 pages, 5 figures, jpsj2 class file, to be published in J. Phy. Soc.
Jpn. Vol.75 No.3 (2006); layout changed, unrelated figure remove
Neutron Scattering Study of Magnetic Ordering and Excitations in the Doped Spin Gap System Tl(CuMg)Cl
Neutron elastic and inelastic scattering measurements have been performed in
order to investigate the spin structure and the magnetic excitations in the
impurity-induced antiferromagnetic ordered phase of the doped spin gap system
Tl(CuMg)Cl with . The magnetic Bragg reflections
indicative of the ordering were observed at with integer
and odd below K. It was found that the spin structure
of the impurity-induced antiferromagnetic ordered phase on average in
Tl(CuMg)Cl with is the same as that of the
field-induced magnetic ordered phase for in the parent
compound TlCuCl. The triplet magnetic excitation was clearly observed in
the - plane and the dispersion relations of the triplet excitation
were determined along four different directions. The lowest triplet excitation
corresponding to the spin gap was observed at with integer
and odd , as observed in TlCuCl. It was also found that the spin gap
increases steeply below upon decreasing temperature. This strongly
indicates that the impurity-induced antiferromagnetic ordering coexists with
the spin gap state in Tl(CuMg)Cl with .Comment: 24 pages, 7 figures, 11 eps files, revtex style, will appear in Phys.
Rev.
Random Bond Effect in the Quantum Spin System (TlK)CuCl
The effect of exchange bond randomness on the ground state and the
field-induced magnetic ordering was investigated through magnetization
measurements in the spin-1/2 mixed quantum spin system
(TlK)CuCl for . Both parent compounds TlCuCl and
KCuCl are coupled spin dimer systems, which have the singlet ground state
with excitation gaps K and 31 K, respectively. Due to
bond randomness, the singlet ground state turns into the magnetic state with
finite susceptibility, nevertheless, the excitation gap remains. Field-induced
magnetic ordering, which can be described by the Bose condensation of excited
triplets, magnons, was observed as in the parent systems. The phase transition
temperature is suppressed by the bond randomness. This behavior may be
attributed to the localization effect.Comment: 19 pages, 7 figures, 12 eps files, revtex, will appear in PR
Impurity-Induced Antiferromagnetic Ordering in the Spin Gap System TlCuCl_3
The magnetization measurements have been performed on the doped spin gap
system TlCu_{1-x}Mg_xCl_3 with x <= 0.025. The parent compound TlCuCl_3 is a
three-dimensional coupled spin dimer system with the excitation gap Delta/k_B =
7.7 K. The impurity-induced antiferromagnetic ordering was clearly observed.
The easy axis lies in the (0,1,0) plane. It was found that the transition
temperature increases with increasing Mg^{2+} concentration x, while the
spin-flop transition field is almost independent of x. The magnetization curve
suggests that the impurity-induced antiferromagnetic ordering coexists with the
spin gap for x <= 0.017.Comment: 5 pages, 6 figures, revtex styl
Onsager-Manning-Oosawa condensation phenomenon and the effect of salt
Making use of results pertaining to Painleve III type equations, we revisit
the celebrated Onsager-Manning-Oosawa condensation phenomenon for charged stiff
linear polymers, in the mean-field approximation with salt. We obtain
analytically the associated critical line charge density, and show that it is
severely affected by finite salt effects, whereas previous results focused on
the no salt limit. In addition, we obtain explicit expressions for the
condensate thickness and the electric potential. The case of asymmetric
electrolytes is also briefly addressed.Comment: to appear in Phys. Rev. Let
Correlation length of hydrophobic polyelectrolyte solutions
The combination of two techniques (Small Angle X-ray Scattering and Atomic
Force Microscopy) has allowed us to measure in reciprocal and real space the
correlation length of salt-free aqueous solutions of highly charged
hydrophobic polyelectrolyte as a function of the polymer concentration ,
charge fraction and chain length . Contrary to the classical behaviour
of hydrophilic polyelectrolytes in the strong coupling limit, is strongly
dependent on . In particular a continuous transition has been observed from
to when decreased from 100% to
35%. We interpret this unusual behaviour as the consequence of the two features
characterising the hydrophobic polyelectrolytes: the pearl necklace
conformation of the chains and the anomalously strong reduction of the
effective charge fraction.Comment: 7 pages, 5 figures, submitted to Europhysics Letter
Fluid-crystal coexistence for proteins and inorganic nanocolloids: dependence on ionic strength
We investigate theoretically the fluid-crystal coexistence of solutions of
globular charged nanoparticles like proteins and inorganic colloids. The
thermodynamic properties of the fluid phase are computed via the optimized
Baxter model. This is done specifically for lysozyme and silicotungstates for
which the bare adhesion parameters are evaluated via the experimental second
virial coefficients. The electrostatic free energy of the crystal is
approximated by supposing the cavities in the interstitial phase between the
particles are spherical in form. In the salt-free case a Poisson-Boltzmann
equation is solved to calculate the effective charge on a particle and a Donnan
approximation is used to derive the chemical potential and osmotic pressure in
the presence of salt. The coexistence data of lysozyme and silicotungstates are
analyzed within this scheme, especially with regard to the ionic-strength
dependence of the chemical potentials. The latter agree within the two phases
provided some upward adjustment of the effective charge is allowed for.Comment: 15 pages, 9 figure
Critical Properties of Condensation of Field-Induced Triplet Quasiparticles
A review on the field-induced magnetic ordering is given, together with some
results of a quantum Monte Carlo simulation focused on the critical behevior
near the quantum critical point.Comment: Proceedings of SPQS, Sendai, 200
Temperature Effects on Threshold Counterion Concentration to Induce Aggregation of fd Virus
We seek to determine the mechanism of like-charge attraction by measuring the
temperature dependence of critical divalent counterion concentration
() for the aggregation of fd viruses. We find that an increase in
temperature causes to decrease, primarily due to a decrease in the
dielectric constant () of the solvent. At a constant ,
is found to increase as the temperature increases. The effects of
and on can be combined to that of one parameter:
Bjerrum length (). decreases exponentially as
increases, suggesting that entropic effect of counterions plays an important
role at the onset of bundle formation.Comment: 12 pages, 3 figure
- …