56 research outputs found

    Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo

    Get PDF
    BACKGROUND: Identification of fibroblast derived factors in tumor progression has the potential to provide novel molecular targets for modulating tumor cell growth and metastasis. Multiple matrix metalloproteases (MMPs) are expressed by both mesenchymal and epithelial cells within head and neck squamous cell carcinomas (HNSCCs), but the relative importance of these enzymes and the cell source is the subject of controversy. METHODS: The invasive potential of HNSCC tumor cells were assessed in vitro atop type I collagen gels in coculture with wild-type (WT), MMP-2 null, MMP-9 null or MT1-MMP null fibroblasts. A floor of mouth mouse model of HNSCC was used to assess in vivo growth after co-injection of FaDu tumor cells with MMP null fibroblasts. RESULTS: Here we report changes in tumor phenotype when FaDu HNSCCs cells are cocultured with WT, MMP-2 null, MMP-9 null or MT1-MMP null fibroblasts in vitro and in vivo. WT, MMP-2 null and MMP-9 null fibroblasts, but not MT1-MMP null fibroblasts, spontaneously invaded into type I collagen gels. WT fibroblasts stimulated FaDu tumor cell invasion in coculture. This invasive phenotype was unaffected by combination with MMP-9 null fibroblasts, reduced with MMP-2 null fibroblasts (50%) and abrogated in MT1-MMP null fibroblasts. Co-injection of FaDu tumor cells with fibroblasts in an orthotopic oral cavity SCID mouse model demonstrated a reduction of tumor volume using MMP-9 and MMP-2 null fibroblasts (48% and 49%, respectively) compared to WT fibroblasts. Consistent with in vitro studies, MT1-MMP null fibroblasts when co-injected with FaDu cells resulted in a 90% reduction in tumor volume compared to FaDu cells injected with WT fibroblasts. CONCLUSION: These data suggest a role for fibroblast-derived MMP-2 and MT1-MMP in HNSCC tumor invasion in vitro and tumor growth in vivo

    S100B as a potential biomarker and therapeutic target in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) pathology is characterized by neuroinflammation and demyelination. Recently, the inflammatory molecule S100B was identified in cerebrospinal fluid (CSF) and serum of MS patients. Although seen as an astrogliosis marker, lower/physiological levels of S100B are involved in oligodendrocyte differentiation/maturation. Nevertheless, increased S100B levels released upon injury may induce glial reactivity and oligodendrocyte demise, exacerbating tissue damage during an MS episode or delaying the following remyelination. Here, we aimed to unravel the functional role of S100B in the pathogenesis of MS. Elevated S100B levels were detected in the CSF of relapsing-remitting MS patients at diagnosis. Active demyelinating MS lesions showed increased expression of S100B and its receptor, the receptor for advanced glycation end products (RAGE), in the lesion area, while chronic active lesions displayed increased S100B in demyelinated areas with lower expression of RAGE in the rim. Interestingly, reactive astrocytes were identified as the predominant cellular source of S100B, whereas RAGE was expressed by activated microglia/macrophages. Using an ex vivo demyelinating model, cerebral organotypic slice cultures treated with lysophosphatidylcholine (LPC), we observed a marked elevation of S100B upon demyelination, which co-localized mostly with astrocytes. Inhibition of S100B action using a directed antibody reduced LPC-induced demyelination, prevented astrocyte reactivity and abrogated the expression of inflammatory and inflammasome-related molecules. Overall, high S100B expression in MS patient samples suggests its usefulness as a diagnostic biomarker for MS, while the beneficial outcome of its inhibition in our demyelinating model indicates S100B as an emerging therapeutic target in MS.This work was supported by Medal of Honor L’Oréal for Women in Science (FCT, UNESCO, L’Óreal) and innovation grant (Ordem dos Farmacêuticos) to AF, a post-doctoral grant from Fundação para a Ciência e Tecnologia (FCT-SFRH/BPD/96794/2013) and a DuPré Grant from the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) to AB, and by FCT-Pest- OE/SAU/UI4013 to iMed.ULisboa.info:eu-repo/semantics/publishedVersio

    Wait and Scan Therapie - eine Option bei der Behandlung des Vestibularisschwannoms

    No full text

    Stirnbeinosteomyelitis - sinugene Komplikation bei einem fünfjährigen Knaben

    No full text

    Osteomyelitis of the frontal bone secondary to acute sinusitis in a 5-year-old boy

    No full text

    Variations in Subscapularis Muscle Innervation—A Report on Case Series

    No full text
    Background and objectives: The subscapularis muscle is typically innervated by two distinct nerve branches, namely the upper and lower subscapular nerve. These usually originate from the posterior cord of the brachial plexus. A large number of variations have been described in previous literature. Materials and Methods: Dissection was carried out in 31 cadaveric specimens. The frequency of accessory subscapular nerves was assessed and the distance from the insertion points of these nerves to the myotendinous junction was measured. Results: Accessory subscapular nerves were found in three cases (9.7%). According to their origin from the posterior cord of the brachial plexus proximal to the thoracodorsal nerve all three nerves were identified as accessory upper subscapular nerves. No accessory lower subscapular nerves were found. Conclusion: Accessory nerves occur rather commonly and need to be considered during surgery, nerve blocks, and imaging procedures

    Decontamination of Soil containing POPs by the combined action of Solid Fenton-like Reagents and Microwaves

    No full text
    • …
    corecore