2,032 research outputs found

    Radial velocities and metallicities from infrared Ca II triplet spectroscopy of open clusters II. Berkeley 23, King 1, NGC 559, NGC 6603 and NGC 7245

    Full text link
    Context: Open clusters are key to studying the formation and evolution of the Galactic disc. However, there is a deficiency of radial velocity and chemical abundance determinations for open clusters in the literature. Aims: We intend to increase the number of determinations of radial velocities and metallicities from spectroscopy for open clusters. Methods: We acquired medium-resolution spectra (R~8000) in the infrared region Ca II triplet lines (~8500 AA) for several stars in five open clusters with the long-slit IDS spectrograph on the 2.5~m Isaac Newton Telescope (Roque de los Muchachos Observatory, Spain). Radial velocities were obtained by cross-correlation fitting techniques. The relationships available in the literature between the strength of infrared Ca II lines and metallicity were also used to derive the metallicity for each cluster. Results: We obtain = 48.6+/-3.4, -58.4+/-6.8, 26.0+/-4.3 and -65.3+/-3.2 km s-1 for Berkeley 23, NGC 559, NGC 6603 and NGC 7245, respectively. We found [Fe/H] =-0.25+/-0.14 and -0.15+/-0.18 for NGC 559 and NGC 7245, respectively. Berkeley 23 has a low metallicity, [Fe/H] =-0.42+/-0.13, similar to other open clusters in the outskirts of the Galactic disc. In contrast, we derived a high metallicity ([Fe/H] =+0.43+/-0.15) for NGC 6603, which places this system among the most metal rich known open clusters. To our knowledge, this is the first determination of radial velocities and metallicities from spectroscopy for these clusters, except NGC 6603, for which radial velocities had been previously determined. We have also analysed ten stars in the line of sight to King 1. Because of the large dispersion obtained in both radial velocity and metallicity, we cannot be sure that we have sampled true cluster members.Comment: 10 pages, 5 figures, accepted for publication in A&A (minor modifications

    Photometric reverberation mapping of 3C120

    Full text link
    We present the results of a five month monitoring campaign of the local active galactic nuclei (AGN) 3C120. Observations with a median sampling of two days were conducted with the robotic 15cm telescope VYSOS-6 located near Cerro Armazones in Chile. Broad band (B,V) and narrow band (NB) filters were used in order to measure fluxes of the AGN and the H_beta broad line region (BLR) emission line. The NB flux is constituted by about 50% continuum and 50% H_beta emission line. To disentangle line and continuum flux, a synthetic H_beta light curve was created by subtracting a scaled V-band light curve from the NB light curve. Here we show that the H_beta emission line responds to continuum variations with a rest frame lag of 23.6 +/- 1.69 days. We estimate a virial mass of the central black hole M_BH = 57 +/- 27 * 10^6 solar masses, by combining the obtained lag with the velocity dispersion of a single contemporaneous spectrum. Using the flux variation gradient (FVG) method, we determined the host galaxy subtracted rest frame 5100A luminosity at the time of our monitoring campaign with an uncertainty of 10% (L_AGN = 6.94 +/- 0.71* 10^43 ergs^-1). Compared with recent spectroscopic reverberation results, 3C120 shifts in the R_BLR - L_AGN diagram remarkably close to the theoretically expected relation of R-L^0.5. Our results demonstrate the performance of photometric AGN reverberation mapping, in particular for efficiently determining the BLR size and the AGN luminosityComment: 11 pages, 11 figures, Published in Astronomy and Astrophysic

    Modelling photometric reverberation data -- a disk-like broad-line region and a potentially larger black hole mass for 3C120

    Full text link
    We consider photometric reverberation mapping, where the nuclear continuum variations are monitored via a broad-band filter and the echo of emission line clouds of the broad line region (BLR) is measured with a suitable narrow-band (NB) filter. We investigate how an incomplete emission-line coverage by the NB filter influences the BLR size determination. This includes two basic cases: 1) a symmetric cut of the blue and red part of the line wings, and 2) the filter positioned asymmetrically to the line centre so that essentially a complete half of the emission line is contained in the NB filter. Under the assumption that the BLR size is dominated by circular Keplerian orbits, we find that symmetric cutting of line wings may lead to overestimating the BLR size by less than 5%. The case of asymmetric half-line coverage, similar as for our data of the Seyfert 1 galaxy 3C120, yields the BLR size with a bias of less than 1%. Our results suggest that any BLR size bias due to narrow-band line cut in photometric reverberation mapping is small and in most cases negligible. We used well sampled photometric reverberation mapping light curves with sharp variation features in both the continuum and the Hbeta light curves to determine the geometry type of the Hbeta BLR for 3C120. Modelling of the light curve, under the assumption that the BLR is essentially virialised, argues against a spherical geometry and favours a nearly face-on disk-like geometry with inclination i = 10 +/- 4 deg and extension from 22 to 28 light days. The low inclination may lead to a larger black hole mass than the derived when using the average geometry scaling factor f=5.5. We discuss deviations of Seyfert 1 galaxies from the M_BH - sigma relation.Comment: 9 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Modelling and analysing the relationship between innovation and the European Regulations on hazardous waste shipments

    Get PDF
    In Europe, there are different regulations regarding hazardous waste management with which European Union Member States must comply. On the one hand, Member States must meet the recovery targets that are set in the different waste Directives, and they have two options here: material recovery facilities in the country of origin, or recovery through the shipment of waste. In addition, EU Member States must comply with the regulations governing the shipment of hazardous waste (HW), that is, the Basel Convention and the European Regulation on the shipment of waste. Two main questions arise: where is hazardous waste sent, and why? We analyse the European regulation on the shipment of waste, and we consider the above questions by combining network analysis methodology, to examine which countries in the network can be grouped in HW-trading communities, and ANOVA technique to study how the groups created in the network behave in different contexts. These HW-trading communities can be assessed according to European Innovation Indicators, GDP, and other variables. The results allow us to understand the drivers behind the shipment of HW for recovery in Europe. First, this study provides a descriptive overview of the relationships between European countries, the way in which they cooperate and describes how each country is positioned in the joint network. Second, the study is able to identify the most relevant countries in the network. Third, the HW-trading communities are analysed to discover whether they behave differently from the other groups according to GDP and other variables, amongst which we have included the following Europe Innovation Indicators: innovation index, research systems, innovation friendly environment, or innovators. The results show that the Nordic countries are outstanding in the way in which their waste is managed with other countries and reveal a community that works both in the context of hazardous waste shipment and innovation
    • …
    corecore