801 research outputs found
Transient currents and universal timescales for a fully time-dependent quantum dot in the Kondo regime
Using the time-dependent non-crossing approximation, we calculate the
transient response of the current through a quantum dot subject to a finite
bias when the dot level is moved suddenly into a regime where the Kondo effect
is present. After an initial small but rapid response, the time-dependent
conductance is a universal function of the temperature, bias, and inverse time,
all expressed in units of the Kondo temperature. Two timescales emerge: the
first is the time to reach a quasi-metastable point where the Kondo resonance
is formed as a broad structure of half-width of the order of the bias; the
second is the longer time required for the narrower split peak structure to
emerge from the previous structure and to become fully formed. The first time
can be measured by the gross rise time of the conductance, which does not
substantially change later while the split peaks are forming. The second time
characterizes the decay rate of the small split Kondo peak (SKP) oscillations
in the conductance, which may provide a method of experimental access to it.
This latter timescale is accessible via linear response from the steady
stateand appears to be related to the scale identified in that manner [A.
Rosch, J. Kroha, and P. Wolfle, Phys. Rev. Lett. 87, 156802 (2001)].Comment: Revtex with 15 eps figures. Compiles to 11 page
Kondo time scales for quantum dots - response to pulsed bias potentials
The response of a quantum dot in the Kondo regime to rectangular pulsed bias
potentials of various strengths and durations is studied theoretically. It is
found that the rise time is faster than the fall time, and also faster than
time scales normally associated with the Kondo problem. For larger values of
the pulsed bias, one can induce dramatic oscillations in the induced current
with a frequency approximating the splitting between the Kondo peaks that would
be present in steady state. The effect persists in the total charge transported
per pulse, which should facilitate the experimental observation of the
phenomenon.Comment: 5 pages with 4 encapsulated figures which come in separate postscript
files: latex file: text.tex figures: fig1.eps, fig2.eps, fig3.eps, fig4.ep
Work Function Dependence of Charge Transfer in Desorption and Sputtering of Atoms from Surfaces
Using a recently developed many-electron theory, we investigate the work function dependence of charge transfer during desorption and sputtering of atoms from metal surfaces. We investigate the effects of substrate bandwidth, atomic velocity and level degeneracy on the charge transfer. We show that many-electron interactions introduce relatively small but measurable effects on the work function dependence of the charge transfer. We find that these effects can be stronger for negative ion states than for positive ion states. The reason is that for negative ions, a strongly correlated Kondo state may be formed near the surface
Resonance Lifetimes from Complex Densities
The ab-initio calculation of resonance lifetimes of metastable anions
challenges modern quantum-chemical methods. The exact lifetime of the
lowest-energy resonance is encoded into a complex "density" that can be
obtained via complex-coordinate scaling. We illustrate this with one-electron
examples and show how the lifetime can be extracted from the complex density in
much the same way as the ground-state energy of bound systems is extracted from
its ground-state density
Many Body Theory of Charge Transfer in Hyperthermal Atomic Scattering
We use the Newns-Anderson Hamiltonian to describe many-body electronic
processes that occur when hyperthermal alkali atoms scatter off metallic
surfaces. Following Brako and Newns, we expand the electronic many-body
wavefunction in the number of particle-hole pairs (we keep terms up to and
including a single particle-hole pair). We extend their earlier work by
including level crossings, excited neutrals and negative ions. The full set of
equations of motion are integrated numerically, without further approximations,
to obtain the many-body amplitudes as a function of time. The velocity and
work-function dependence of final state quantities such as the distribution of
ion charges and excited atomic occupancies are compared with experiment. In
particular, experiments that scatter alkali ions off clean Cu(001) surfaces in
the energy range 5 to 1600 eV constrain the theory quantitatively. The
neutralization probability of Na ions shows a minimum at intermediate
velocity in agreement with the theory. This behavior contrasts with that of
K, which shows ... (7 figures, not included. Figure requests:
[email protected])Comment: 43 pages, plain TeX, BUP-JBM-
The effects of pushback delays on airport ground movement
With the constant increase in air traffic, airports are facing capacity problems. Optimisation methods for specific airport processes are starting to be increasingly utilised by many large airports. However, many processes do happen in parallel, and maximising the potential benefits will require a more complex optimisation model, which can consider multiple processes simultaneously and take into account the detailed complexities of the processes where necessary, rather than using more abstract models. This paper focuses on one of these complexities, which is usually ignored in ground movement planning; showing the importance of the pushback process in the routing process. It investigates whether taking the pushback process into consideration can result in the prediction of delays that would otherwise pass unnoticed. Having an accurate model for the pushback process is important for this and identifying all of the delays that may occur can lead to more accurate and realistic models that can then be used in the decision making process for ground movement operations. After testing two different routing methods with a more detailed pushback process, we found that many of the delays are not predicted if the pushback process is not explicitly modelled. Having a more precise model, with accurate movements of aircraft is very important for any integrated model and will allow ground movement models to be of use in more reliable integrated decision making systems at airports. Minimising these delays can help airports increase their capacity and become more environmentally friendly
The importance of considering pushback time and arrivals when routing departures on the ground at airports
With the constant increase in air traffic, airports are facing capacity problems. Many airports are increasingly interested in utilising optimisation methods for specific airport processes. However, many such processes do happen in parallel, and maximising the potential benefits will require a complex optimisation model. A model which considers multiple processes simultaneously and the detailed complexities of the processes, rather than using more abstract models. This paper investigates how the arriving aircraft can affect the routing process and whether the pushback process can result into different types of delays. Furthermore, aircraft are routed backwards, starting from the destination in order to be at the runway on time and to respect the departure sequence. After testing our model with and without the arriving aircraft we found that arriving aircraft can indeed produce a lot of delays. Such delays would otherwise pass unnoticed as they result to departing aircraft choose different paths or pushback earlier so they be at the runway on time. Having an accurate model for the pushback process is important in order to understand in depth how the pushback process affects the other processes that happen in parallel. Furthermore, it led to more accurate and realistic model, which may assist the decision making process for ground movement operations and thereby help airports increase their capacity and become more environmentally friendly
- …