2,243 research outputs found

    Superpositions of SU(3) coherent states via a nonlinear evolution

    Get PDF
    We show that a nonlinear Hamiltonian evolution can transform an SU(3) coherent state into a superposition of distinct SU(3) coherent states, with a superposition of two SU(2) coherent states presented as a special case. A phase space representation is depicted by projecting the multi-dimensional QQ-symbol for the state to a spherical subdomain of the coset space. We discuss realizations of this nonlinear evolution in the contexts of nonlinear optics and Bose--Einstein condensates

    Weak non-linearities and cluster states

    Full text link
    We propose a scalable approach to building cluster states of matter qubits using coherent states of light. Recent work on the subject relies on the use of single photonic qubits in the measurement process. These schemes have a low initial success probability and low detector efficiencies cause a serious blowup in resources. In contrast, our approach uses continuous variables and highly efficient measurements. We present a two-qubit scheme, with a simple homodyne measurement system yielding an entangling operation with success probability 1/2. Then we extend this to a three-qubit interaction, increasing this probability to 3/4. We discuss the important issues of the overhead cost and the time scaling, showing how these can be vastly improved with access to this new probability range.Comment: 5 pages, to appear in Phys. Rev.

    Study of a model for the folding of a small protein

    Full text link
    We describe the results obtained from an improved model for protein folding. We find that a good agreement with the native structure of a 46 residue long, five-letter protein segment is obtained by carefully tuning the parameters of the self-avoiding energy. In particular we find an improved free-energy profile. We also compare the efficiency of the multidimensional replica exchange method with the widely used parallel tempering.Comment: typos corrected, one figure adde

    Precision Measurements Using Squeezed Spin States via Two-axis Counter-twisting Interactions

    Get PDF
    We show that the two-axis counter twisting interaction squeezes a coherent spin state into three states of interest in quantum information, namely, the twin-Fock state, the equally-weighted superposition state, and the state that achieves the Heisenberg limit of optimal sensitivity defined by the Cramer-Rao inequality in addition to the well-known Heisenberg-limited state of spin fluctuations.Comment: 5 pages, 3 figure

    Entanglement detection from interference fringes in atom-photon systems

    Full text link
    A measurement scheme of atomic qubits pinned at given positions is studied by analyzing the interference pattern obtained when they emit photons spontaneously. In the case of two qubits, a well-known relation is revisited, in which the interference visibility is equal to the concurrence of the state in the infinite spatial separation limit of the qubits. By taking into account the super-radiant and sub-radiant effects, it is shown that a state tomography is possible when the qubit spatial separation is comparable to the wavelength of the atomic transition. In the case of three qubits, the relations between various entanglement measures and the interference visibility are studied, where the visibility is defined from the two-qubit case. A qualitative correspondence among these entanglement relations is discussed. In particular, it is shown that the interference visibility is directly related to the maximal bipartite negativity.Comment: 12 pages, 2 figures, published versio

    Practical effects in the preparation of cluster states using weak non-linearities

    Full text link
    We discuss experimental effects in the implementation of a recent scheme for performing bus mediated entangling operations between qubits. Here a bus mode, a strong coherent state, successively undergoes weak Kerr-type non-linear interactions with qubits. A quadrature measurement on the bus then projects the qubits into an entangled state. This approach has the benefit that entangling gates are non-destructive, may be performed non-locally, and there is no need for efficient single photon detection. In this paper we examine practical issues affecting its experimental implementation. In particular, we analyze the effects of post-selection errors, qubit loss, bus loss, mismatched coupling rates and mode-mismatch. We derive error models for these effects and relate them to realistic fault-tolerant thresholds, providing insight into realistic experimental requirements.Comment: 8 pages, 5 figure

    Qudit Quantum State Tomography

    Get PDF
    Recently quantum tomography has been proposed as a fundamental tool for prototyping a few qubit quantum device. It allows the complete reconstruction of the state produced from a given input into the device. From this reconstructed density matrix, relevant quantum information quantities such as the degree of entanglement and entropy can be calculated. Generally orthogonal measurements have been discussed for this tomographic reconstruction. In this paper, we extend the tomographic reconstruction technique to two new regimes. First we show how non-orthogonal measurement allow the reconstruction of the state of the system provided the measurements span the Hilbert space. We then detail how quantum state tomography can be performed for multi qudits with a specific example illustrating how to achieve this in one and two qutrit systems.Comment: 6 pages, 4 figures, submitted to PR

    Tunneling and rattling in clathrate crystal

    Full text link
    We present tunneling and rattling motions of an off-center guest atom in cage referring to a clathrate crystal La_3Pd_{20}Ge_6. The elastic constant C_{44} of La_3Pd_{20}Ge_6 shows a Debye-type dispersion around 20 K obeying a relaxation time tau = tau_0exp(E/k_{B}T) with an attempt time tau_0 = 2.0*10^{-12} sec and an activation energy E = 197 K. At low temperatures below 3 K down to 20 mK, the C_{44} shows a softening of C_{44} = C_{44}^0(T-T_C^0)/(T-Theta) with T_C^0 = -337.970 mK and Theta = -338.044 mK. These facts are attributed to two different types of the off-center motions with Gamma_5 symmetry in 4a-site cage of La_3Pd_{20}Ge_6, a thermally activated rattling motion over the potential hill and a tunneling motion through the potential hill at low temperatures.Comment: 5 pages, 4 figures, to be published Phys. Rev.
    corecore