We discuss experimental effects in the implementation of a recent scheme for
performing bus mediated entangling operations between qubits. Here a bus mode,
a strong coherent state, successively undergoes weak Kerr-type non-linear
interactions with qubits. A quadrature measurement on the bus then projects the
qubits into an entangled state. This approach has the benefit that entangling
gates are non-destructive, may be performed non-locally, and there is no need
for efficient single photon detection. In this paper we examine practical
issues affecting its experimental implementation. In particular, we analyze the
effects of post-selection errors, qubit loss, bus loss, mismatched coupling
rates and mode-mismatch. We derive error models for these effects and relate
them to realistic fault-tolerant thresholds, providing insight into realistic
experimental requirements.Comment: 8 pages, 5 figure