246 research outputs found
Age dependence of the Vega Phenomenon: Theory
In a separate paper (Decin et al 2003), we have re-examined the observations
of IR excess obtained with the ISO satellite and discussed the ages of stars
with excess. The amount of dust (measured by the luminosity fraction
\fdust=L_\mathrm{IR}/L_{\star}) seen around main-sequence stars of different
ages shows several interesting trends. To discuss these results in the context
of a physical model, we develop in this paper an analytical model for the dust
production in Vega-type systems. Previously it has been claimed that a powerlaw
slope of about -2 in the diagram plotting amount of dust versus time could be
explained by a simple collisional cascade. We show that such a cascade in fact
results in a powerlaw \fdust\propto t^{-1} if the dust removal processes are
dominated by collisions. A powerlaw \fdust\propto t^{-2} only results when the
dust removal processes become dominated by Pointing-Robertson drag. This may be
the case in the Kuiper Belt of our own solar system, but it is certainly not
the case in any of the observed disks. A steeper slope can, however, be created
by including continuous stirring into the models. We show that the existence of
both young and old Vega-like systems with large amounts of dust (\fdust\simeq
10^{-3}) can be explained qualitatively by Kuiper-Belt-like structures with
\emph{delayed stirring}. Finally, the absence of young stars with intermediate
amounts of dust may be due to the fact that stirring due to planet formation
may not be active in young low-mass disks. The considerations in this paper
support the picture of simultaneous stirring and dust production proposed by
Kenyon and Bromley (2002).Comment: 26 pages, 3 figures, accepted for Publication in Ap
<i>Koristocetus pescei</i> gen. et sp. nov., a diminutive sperm whale (Cetacea: Odontoceti: Kogiidae) from the late Miocene of Peru
Among odontocetes, members of the family Kogiidae (pygmy and dwarf sperm whales) are known as small-sized and in many respects enigmatic relatives of the great sperm whale Physeter macrocephalus. Most of the still scanty fossil record of Kogiidae is represented by isolated skulls and ear bones from Neogene deposits of the Northern Hemisphere, with the significant exception of Scaphokogia, a highly autapomorphic genus from late Miocene deposits of the Pisco Formation exposed along the southern coast of Peru. Here we report on a new fossil kogiid from Aguada de Lomas, a site where the late Miocene beds of the Pisco Formation are exposed. This specimen consists of an almost complete cranium representing a new taxon of Kogiidae: Koristocetus pescei gen. et sp. nov. Koristocetus mainly differs from extant Kogia spp. by displaying a larger temporal fossa and well-individualized dental alveoli on the upper jaws. Coupled with a relatively elongated rostrum, these characters suggest that Koristocetus retained some degree of raptorial feeding abilities, contrasting with the strong suction feeding specialization seen in Recent kogiids. Our phylogenetic analysis recognizes Koristocetus as the earliest branching member of the subfamily Kogiinae. Interestingly, Koristocetus shared the southern coast of present-day Peru with members of the genus Scaphokogia, whose unique convex rostrum and unusual neurocranial morphology seemingly indicate a peculiar foraging specialization that has still to be understood. In conclusion, Koristocetus evokes a long history of high diversity, morphological disparity, and sympatric habits in fossil kogiids, thus suggesting that our comprehension of the evolutionary history of pygmy and dwarf sperm whales is still far from being exhaustive
A new Miocene baleen whale from Peru deciphers the dawn of cetotheriids
Cetotheriidae are an iconic, nearly extinct family of baleen whales (Mysticeti) with a highly distinct cranial morphology. Their origins remain a mystery, with even the most archaic species showing a variety of characteristic features. Here, we describe a new species of archaic cetotheriid, Tiucetus rosae, from the Miocene of Peru. The new material represents the first mysticete from the poorly explored lowest portion of the highly fossiliferous Pisco Formation (allomember P0), and appears to form part of a more archaic assemblage than observed at the well-known localities of Cerro Colorado, Cerro los Quesos, Sud-Sacaco and Aguada de Lomas. Tiucetus resembles basal plicogulans (crown Mysticeti excluding right whales), such as Diorocetus and Parietobalaena, but shares with cetotheriids a distinct morphology of the auditory region, including the presence of an enlarged paroccipital concavity. The distinctive morphology of Tiucetus firmly places Cetotheriidae in the context of the poorly understood âcetotheresâ sensu lato, and helps to resolve basal relationships within crown Mysticeti
Koristocetus pescei gen. et sp. nov., a diminutive sperm whale (Cetacea: Odontoceti: Kogiidae) from the late Miocene of Peru
Among odontocetes, members of the family Kogiidae (pygmy and dwarf sperm whales) are known as small-sized and in many respects enigmatic relatives of the great sperm whale Physeter macrocephalus. Most of the still scanty fossil record of Kogiidae is represented by isolated skulls and ear bones from Neogene deposits of the Northern Hemisphere, with the significant exception of Scaphokogia, a highly autapomorphic genus from late Miocene deposits of the Pisco Formation exposed along the southern coast of Peru. Here we report on a new fossil kogiid from Aguada de Lomas, a site where the late Miocene beds of the Pisco Formation are exposed. This specimen consists of an almost complete cranium representing a new taxon of Kogiidae: Koristocetus pescei gen. et sp. nov. Koristocetus mainly differs from extant Kogia spp. by displaying a larger temporal fossa and well-individualized dental alveoli on the upper jaws. Coupled with a relatively elongated rostrum, these characters suggest that Koristocetus retained some degree of raptorial feeding abilities, contrasting with the strong suction feeding specialization seen in Recent kogiids. Our phylogenetic analysis recognizes Koristocetus as the earliest branching member of the subfamily Kogiinae. Interestingly, Koristocetus shared the southern coast of present-day Peru with members of the genus Scaphokogia, whose unique convex rostrum and unusual neurocranial morphology seemingly indicate a peculiar foraging specialization that has still to be understood. In conclusion, Koristocetus evokes a long history of high diversity, morphological disparity, and sympatric habits in fossil kogiids, thus suggesting that our comprehension of the evolutionary history of pygmy and dwarf sperm whales is still far from being exhaustive
A Vega--like disk associated with the planetary system of rho (1) CNC
Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
Incidence and survival of remnant disks around main-sequence stars
We present photometric ISO 60 and 170um measurements, complemented by some
IRAS data at 60um, of a sample of 84 nearby main-sequence stars of spectral
class A, F, G and K in order to determine the incidence of dust disks around
such main-sequence stars. Of the stars younger than 400 Myr one in two has a
disk; for the older stars this is true for only one in ten. We conclude that
most stars arrive on the main sequence surrounded by a disk; this disk then
decays in about 400 Myr. Because (i) the dust particles disappear and must be
replenished on a much shorter time scale and (ii) the collision of
planetesimals is a good source of new dust, we suggest that the rapid decay of
the disks is caused by the destruction and escape of planetesimals. We suggest
that the dissipation of the disk is related to the heavy bombardment phase in
our Solar System. Whether all stars arrive on the main sequence surrounded by a
disk cannot be established: some very young stars do not have a disk. And not
all stars destroy their disk in a similar way: some stars as old as the Sun
still have significant disks.Comment: 16 pages, 9 figures, Astron & Astrophys. in pres
Mid-Infrared Emission Features in the ISM: Feature-to-Feature Flux Ratios
Using a limited, but representative sample of sources in the ISM of our
Galaxy with published spectra from the Infrared Space Observatory, we analyze
flux ratios between the major mid-IR emission features (EFs) centered around
6.2, 7.7, 8.6 and 11.3 microns, respectively. In a flux ratio-to-flux ratio
plot of EF(6.2)/EF(7.7) as a function of EF(11.3)/EF(7.7), the sample sources
form roughly a -shaped locus which appear to trace, on an overall
basis, the hardness of a local heating radiation field. But some driving
parameters other than the radiation field may also be required for a full
interpretation of this trend. On the other hand, the flux ratio of
EF(8.6)/EF(7.7) shows little variation over the sample sources, except for two
HII regions which have much higher values for this ratio due to an ``EF(8.6\um)
anomaly,'' a phenomenon clearly associated with environments of an intense
far-UV radiation field. If further confirmed on a larger database, these trends
should provide crucial information on how the EF carriers collectively respond
to a changing environment.Comment: 16 pages, 1 figure, 1 table; accepted for publication in ApJ Letter
- âŠ