172 research outputs found

    Theory of semi-ballistic wave propagation

    Get PDF
    Wave propagation through waveguides, quantum wires or films with a modest amount of disorder is in the semi-ballistic regime when in the transversal direction(s) almost no scattering occurs, while in the long direction(s) there is so much scattering that the transport is diffusive. For such systems randomness is modelled by an inhomogeneous density of point-like scatterers. These are first considered in the second order Born approximation and then beyond that approximation. In the latter case it is found that attractive point scatterers in a cavity always have geometric resonances, even for Schr\"odinger wave scattering. In the long sample limit the transport equation is solved analytically. Various geometries are considered: waveguides, films, and tunneling geometries such as Fabry-P\'erot interferometers and double barrier quantum wells. The predictions are compared with new and existing numerical data and with experiment. The agreement is quite satisfactory.Comment: 24 pages Revtex; 10 figure

    Analysis of Photoassociation Spectra for Giant Helium Dimers

    Full text link
    We perform a theoretical analysis to interpret the spectra of purely long-range helium dimers produced by photoassociation (PA) in an ultra-cold gas of metastable helium atoms. The experimental spectrum obtained with the PA laser tuned closed to the 23S1↔23P02^3S_1\leftrightarrow 2^3P_0 atomic line has been reported in a previous Letter. Here, we first focus on the corrections to be applied to the measured resonance frequencies in order to infer the molecular binding energies. We then present a calculation of the vibrational spectra for the purely long-range molecular states, using adiabatic potentials obtained from perturbation theory. With retardation effects taken into account, the agreement between experimental and theoretical determinations of the spectrum for the 0u+0_u^+ purely long-range potential well is very good. The results yield a determination of the lifetime of the 23P2^3P atomic state

    Atomic Deuterium Adsorbed on the Surface of Liquid Helium

    Get PDF
    We investigate deuterium atoms adsorbed on the surface of liquid helium in equilibrium with a vapor of atoms of the same species. These atoms are studied by a sensitive optical method based on spectroscopy at a wavelength of 122 nm, exciting the 1S-2P transition. We present a direct measurement of the adsorption energy of deuterium atoms on helium and show evidence for the existence of resonantly enhanced recombination of atoms residing on the surface to molecules.Comment: 6 pages 4 figure

    Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms

    Full text link
    We report on the production of a pure sample of up to 3x10^5 optically trapped molecules from a Fermi gas of 6Li atoms. The dimers are formed by three-body recombination near a Feshbach resonance. For purification a Stern-Gerlach selection technique is used that efficiently removes all trapped atoms from the atom-molecule mixture. The behavior of the purified molecular sample shows a striking dependence on the applied magnetic field. For very weakly bound molecules near the Feshbach resonance, the gas exhibits a remarkable stability with respect to collisional decay.Comment: 4 pages, 5 figure

    Light scattering from three-level systems: The T-matrix of a point-dipole with gain

    Get PDF
    We present an extension of the T-matrix approach to scattering of light by a three-level system, using a description based on a Master equation. More particularly, we apply our formalism to calculate the T-matrix of a pumped three-level atom, providing an exact and analytical expression describing the influence of a pump on the light scattering properties of an atomic three-level system

    Giant Helium Dimers Produced by Photoassociation of Ultracold Metastable Atoms

    Full text link
    We produce giant helium dimers by photoassociation of metastable helium atoms in a magnetically trapped, ultracold cloud. The photoassociation laser is detuned red of the atomic 23S1−23P02^3S_1 - 2^3P_0 line and produces strong heating of the sample when resonant with molecular bound states. The temperature of the cloud serves as an indicator of the molecular spectrum. We report good agreement between our spectroscopic measurements and our calculations of the five bound states belonging to a 0u+0_u^+ purely long-range potential well. These previously unobserved states have classical inner turning points of about 150 a0a_0 and outer turning points as large as 1150 a0a_0.Comment: 4 pages, 4 figure

    Sympathetic Cooling with Two Atomic Species in an Optical Trap

    Get PDF
    We simultaneously trap ultracold lithium and cesium atoms in an optical dipole trap formed by the focus of a CO2_2 laser and study the exchange of thermal energy between the gases. The cesium gas, which is optically cooled to 20ÎŒ20 \muK, efficiently decreases the temperature of the lithium gas through sympathetic cooling. The measured cross section for thermalizing 133^{133}Cs-7^7Li collisions is 8×10−128 \times 10^{-12} cm2^2, for both species in their lowest hyperfine ground state. Besides thermalization, we observe evaporation of lithium purely through elastic cesium-lithium collisions (sympathetic evaporation).Comment: 4 pages 3 fig

    Adiabatically changing the phase-space density of a trapped Bose gas

    Get PDF
    We show that the degeneracy parameter of a trapped Bose gas can be changed adiabatically in a reversible way, both in the Boltzmann regime and in the degenerate Bose regime. We have performed measurements on spin-polarized atomic hydrogen in the Boltzmann regime demonstrating reversible changes of the degeneracy parameter (phase-space density) by more than a factor of two. This result is in perfect agreement with theory. By extending our theoretical analysis to the quantum degenerate regime we predict that, starting close enough to the Bose-Einstein phase transition, one can cross the transition by an adiabatic change of the trap shape.Comment: 4 pages, 3 figures, Latex, submitted to PR

    Cold atoms in a high-Q ring-cavity

    Get PDF
    We report the confinement of large clouds of ultra-cold 85-Rb atoms in a standing-wave dipole trap formed by the two counter-propagating modes of a high-Q ring-cavity. Studying the properties of this trap we demonstrate loading of higher-order transverse cavity modes and excite recoil-induced resonances.Comment: 4 pages, 4 figure

    Resonant control of elastic collisions in an optically trapped Fermi gas of atoms

    Full text link
    We have loaded an ultracold gas of fermionic atoms into a far off resonance optical dipole trap and precisely controlled the spin composition of the trapped gas. We have measured a magnetic-field Feshbach resonance between atoms in the two lowest energy spin-states, |9/2, -9/2> and |9/2, -7/2>. The resonance peaks at a magnetic field of 201.5 plus or minus 1.4 G and has a width of 8.0 plus or minus 1.1 G. Using this resonance we have changed the elastic collision cross section in the gas by nearly 3 orders of magnitude.Comment: 4 pages, 3 figure
    • 

    corecore