340 research outputs found

    Direct Evidence for a Magnetic f-electron Mediated Cooper Pairing Mechanism of Heavy Fermion Superconductivity in CeCoIn5

    Get PDF
    To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,βE_k^{\alpha,\beta} with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.Comment: 19 pages, 4 figures, Supplementary Information: 31 pages, 5 figure

    Magnetic Coherence as a Universal Feature of Cuprate Superconductors

    Full text link
    Recent inelastic neutron scattering (INS) experiments on La2−x_{2-x}Srx_xCuO4_4 have established the existence of a {\it magnetic coherence effect}, i.e., strong frequency and momentum dependent changes of the spin susceptibility, χ′′\chi'', in the superconducting phase. We show, using the spin-fermion model for incommensurate antiferromagnetic spin fluctuations, that the magnetic coherence effect establishes the ability of INS experiments to probe the electronic spectrum of the cuprates, in that the effect arises from the interplay of an incommensurate magnetic response, the form of the underlying Fermi surface, and the opening of the d-wave gap in the fermionic spectrum. In particular, we find that the magnetic coherence effect observed in INS experiments on La2−x_{2-x}Srx_xCuO4_4 requires that the Fermi surface be closed around (π,π)(\pi,\pi) up to optimal doping. We present several predictions for the form of the magnetic coherence effect in YBa2_2Cu3_3O6+x_{6+x} in which an incommensurate magnetic response has been observed in the superconducting state.Comment: 9 pages, 12 figures; extended version of Phys. Rev B, R6483 (2000

    Impurities, Quantum Interference and Quantum Phase Transitions in s-wave superconductors

    Full text link
    We study the effects of quantum interference in impurity structures consisting of two or three magnetic impurities that are located on the surface of an s-wave superconductor. By using a self-consistent Bogoliubov-de Gennes formalism, we show that quantum interference leads to characteristic signatures not only in the local density of states (LDOS), but also in the spatial form of the superconducting order parameter. We demonstrate that the signatures of quantum interference in the LDOS are qualitatively, and to a large extent quantitatively unaffected by the suppression of the superconducting order parameter near impurities, which illustrates the robustness of quantum interference phenomena. Moreover, we show that by changing the interimpurity distance, or the impurities' scattering strength, the s-wave superconductor can be tuned through a series of first order quantum phase transitions in which the spin polarization of its ground state changes. In contrast to the single impurity case, this transition is not necessarily accompanied by a π\pi-phase shift of the order parameter, and can in certain cases even lead to its enhancement. Our results demonstrate that the superconductor's LDOS, its spin state, and the spatial form of the superconducting order parameter are determined by a subtle interplay between the relative positions of the impurities and their scattering strength

    Quantum Interference between Impurities: Creating Novel Many-Body States in s-wave Superconductors

    Full text link
    We demonstrate that quantum interference of electronic waves that are scattered by multiple magnetic impurities in an s-wave superconductor gives rise to novel bound states. We predict that by varying the inter-impurity distance or the relative angle between the impurity spins, the states' quantum numbers, as well as their distinct frequency and spatial dependencies, can be altered. Finally, we show that the superconductor can be driven through multiple local crossovers in which its spin polarization, , changes between =0,1/2=0, 1/2 and 1.Comment: 4 pages, 4 figure

    Impurity-induced spin polarization and NMR line broadening in underdoped cuprates

    Full text link
    We present a theory of magnetic (S=1) Ni and nonmagnetic Zn impurities in underdoped cuprates. Both types of impurities are shown to induce S=1/2 moments on Cu sites in the proximity of the impurity, a process which is intimately related to the spin gap phenomenon in cuprates. Below a characteristic Kondo temperature, the Ni spin is partially screened by the Cu moments, resulting in an effective impurity spin S=1/2. We further analyze the Ruderman-Kittel-Kasiya-Yosida-type response of planar Cu spins to a polarization of the effective impurity moments and derive expressions for the corresponding ^{17}O NMR line broadening. The peculiar aspects of recent experimental NMR data can be traced back to different spatial characteristics of Ni and Zn moments as well as to an inherent temperature dependence of local antiferromagnetic correlations.Comment: PRB B1 01June9

    Bound states in d-density-wave phases

    Full text link
    We investigate the quasiparticle spectrum near surfaces in a two-dimensional system with d-density-wave order within a mean-field theory. For Fermi surfaces with perfect nesting for the ordering wave vector of the d-density-wave, a zero energy bound state occurs at [110] surfaces, in close analogy with the known effect in d-wave superconducting states or graphite. When the shape of the Fermi surface is changed by doping, the bound state energy moves away from the Fermi level. Furthermore, away from half-filling we find inhomogeneous phases with domain walls of the d-density-wave order parameter. The domain walls also support low energy bound states. These phenomena might provide an experimental test for hidden d-density-wave order in the high-Tc cuprates.Comment: 6 pages, 5 figure

    Defect and anisotropic gap induced quasi-one-dimensional modulation of local density of states in YBa2_2Cu3_3O7−δ_{7-\delta}

    Full text link
    Motivated by recent angle-resolved photoemission spectroscopy (ARPES) measurement that superconducting YBa2_2Cu3_3O7−δ_{7-\delta} (YBCO) exhibits a dx2−y2+sd_{x^2-y^2} + s-symmetry gap, we show possible quasi-one-dimensional modulations of local density of states in YBCO. These aniostropic gap and defect induced stripe structures are most conspicuous at higher biases and arise due to the nesting effect associated with a Fermi liquid. Observation of these spectra by scanning tunneling microscopy (STM) would unify the picture among STM, ARPES, and inelastic neutron scattering for YBCO.Comment: 4 pages, 4 figure

    Spatial Current Patterns, Dephasing and Current Imaging in Graphene Nanoribbons

    Full text link
    Using the non-equilibrium Keldysh Green's function formalism, we investigate the local, non-equilibrium charge transport in graphene nanoribbons (GNRs). In particular, we demonstrate that the spatial current patterns associated with discrete transmission resonances sensitively depend on the GNRs' geometry, size, and aspect ratio, the location and number of leads, and the presence of dephasing. We identify a relation between the spatial form of the current patterns, and the number of degenerate energy states participating in the charge transport. Furthermore, we demonstrate a principle of superposition for the conductance and spatial current patterns in multiple-lead configurations. We demonstrate that scanning tunneling microscopy (STM) can be employed to image spatial current paths in GNR with atomic resolution, providing important insight into the form of local charge transport. Finally, we investigate the effects of dephasing on the spatial current patterns, and show that with decreasing dephasing time, the current patterns evolve smoothly from those of a ballistic quantum network to those of classical resistor network.Comment: 25 pages, 12 figure
    • …
    corecore