2,631 research outputs found

    The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere

    Full text link
    We derive the differential equation governing the asymptotic quasi-stationary states of the two dimensional plasma immersed in a strong confining magnetic field and of the planetary atmosphere. These two systems are related by the property that there is an intrinsic constant length: the Larmor radius and respectively the Rossby radius and a condensate of the vorticity field in the unperturbed state related to the cyclotronic gyration and respectively to the Coriolis frequency. Although the closest physical model is the Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related to the system consisting of a discrete set of point-like vortices interacting in plane by a short range potential. A field-theoretical formalism is developed for describing the continuous version of this system. The action functional can be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the asymptotic states) but the minimum energy is no more topological and the asymptotic structures appear to be non-stationary, which is a major difference with respect to traditional topological vortex solutions. Versions of this field theory are discussed and we find arguments in favor of a particular form of the equation. We comment upon the significant difference between the CHM fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms of the equatio

    Scaling Relations for Collision-less Dark Matter Turbulence

    Full text link
    Many scaling relations are observed for self-gravitating systems in the universe. We explore the consistent understanding of them from a simple principle based on the proposal that the collision-less dark matter fluid terns into a turbulent state, i.e. dark turbulence, after crossing the caustic surface in the non-linear stage. The dark turbulence will not eddy dominant reflecting the collision-less property. After deriving Kolmogorov scaling laws from Navier-Stokes equation by the method similar to the one for Smoluchowski coagulation equation, we apply this to several observations such as the scale-dependent velocity dispersion, mass-luminosity ratio, magnetic fields, and mass-angular momentum relation, power spectrum of density fluctuations. They all point the concordant value for the constant energy flow per mass: 0.3cm2/sec30.3 cm^2/sec^3, which may be understood as the speed of the hierarchical coalescence process in the cosmic structure formation.Comment: 26 pages, 6 figure

    Cosmological Constraints on a Dynamical Electron Mass

    Full text link
    Motivated by recent astrophysical observations of quasar absorption systems, we formulate a simple theory where the electron to proton mass ratio μ=me/mp\mu =m_{e}/m_{p} is allowed to vary in space-time. In such a minimal theory only the electron mass varies, with α\alpha and mpm_{p} kept constant. We find that changes in μ\mu will be driven by the electronic energy density after the electron mass threshold is crossed. Particle production in this scenario is negligible. The cosmological constraints imposed by recent astronomical observations are very weak, due to the low mass density in electrons. Unlike in similar theories for spacetime variation of the fine structure constant, the observational constraints on variations in μ\mu imposed by the weak equivalence principle are much more stringent constraints than those from quasar spectra. Any time-variation in the electron-proton mass ratio must be less than one part in 10910^{9}since redshifts z≈1.z\approx 1.This is more than one thousand times smaller than current spectroscopic sensitivities can achieve. Astronomically observable variations in the electron-proton must therefore arise directly from effects induced by varying fine structure 'constant' or by processes associated with internal proton structure. We also place a new upper bound of 2×10−82\times 10^{-8} on any large-scale spatial variation of μ\mu that is compatible with the isotropy of the microwave background radiation.Comment: New bounds from weak equivalence principle experiments added, conclusions modifie

    Can dark matter be a Bose-Einstein condensate?

    Full text link
    We consider the possibility that the dark matter, which is required to explain the dynamics of the neutral hydrogen clouds at large distances from the galactic center, could be in the form of a Bose-Einstein condensate. To study the condensate we use the non-relativistic Gross-Pitaevskii equation. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. Hence dark matter can be described as a non-relativistic, Newtonian Bose-Einstein gravitational condensate gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index n=1n=1. To test the validity of the model we fit the Newtonian tangential velocity equation of the model with a sample of rotation curves of low surface brightness and dwarf galaxies, respectively. We find a very good agreement between the theoretical rotation curves and the observational data for the low surface brightness galaxies. The deflection of photons passing through the dark matter halos is also analyzed, and the bending angle of light is computed. The bending angle obtained for the Bose-Einstein condensate is larger than that predicted by standard general relativistic and dark matter models. Therefore the study of the light deflection by galaxies and the gravitational lensing could discriminate between the Bose-Einstein condensate dark matter model and other dark matter models.Comment: 20 pages, 7 figures, accepted for publication in JCAP, references adde

    Galactic periodicity and the oscillating G model

    Get PDF
    We consider the model involving the oscillation of the effective gravitational constant that has been put forward in an attempt to reconcile the observed periodicity in the galaxy number distribution with the standard cosmological models. This model involves a highly nonlinear dynamics which we analyze numerically. We carry out a detailed study of the bound that nucleosynthesis imposes on this model. The analysis shows that for any assumed value for Ω\Omega (the total energy density) one can fix the value of Ωbar\Omega_{\rm bar} (the baryonic energy density) in such a way as to accommodate the observational constraints coming from the 4He^4{\rm He} primordial abundance. In particular, if we impose the inflationary value Ω=1\Omega=1 the resulting baryonic energy density turns out to be Ωbar∼0.021\Omega_{\rm bar}\sim 0.021. This result lies in the very narrow range 0.016≤Ωbar≤0.0260.016 \leq \Omega_{\rm bar} \leq 0.026 allowed by the observed values of the primordial abundances of the other light elements. The remaining fraction of Ω\Omega corresponds to dark matter represented by a scalar field.Comment: Latex file 29 pages with no figures. Please contact M.Salgado for figures. A more careful study of the model appears in gr-qc/960603

    Thermal Hair of Quantum Black Hole

    Get PDF
    We investigate the possibility of statistical explanation of the black hole entropy by counting quasi-bounded modes of thermal fluctuation in two dimensional black hole spacetime. The black hole concerned is quantum in the sense that it is in thermal equilibrium with its Hawking radiation. It is shown that the fluctuation around such a black hole obeys a wave equation with a potential whose peaks are located near the black hole and which is caused by quantum effect. We can construct models in which the potential in the above sense has several positive peaks and there are quai-bounded modes confined between these peaks. This suggests that these modes contribute to the black hole entropy. However it is shown that the entropy associated with these modes dose not obey the ordinary area law. Therefore we can call these modes as an additional thermal hair of the quantum black hole.Comment: LaTeX, 12 pages, 14 postscript figures, submitted to Phys. Rev.

    Morphology of axisymmetric vesicles with encapsulated filaments and impurities

    Full text link
    The shape deformation of a three-dimensional axisymmetric vesicle with encapsulated filaments or impurities is analyzed by integrating a dissipation dynamics. This method can incorporate systematically the constraint of a fixed surface area and/or a fixed volume. The filament encapsulated in a vesicle is assumed to take a form of a rod or a ring so as to imitate cytoskeletons. In both cases, results of the shape transition of the vesicle are summarized in phase diagrams in the phase space of the vesicular volume and a rod length or a ring radius. We also study the dynamics of a vesicle with impurities coupled to the membrane curvature. The phase separation and the associated shape deformation in the early stage of the dynamical evolution can well be explained by the linear stability analysis. Long runs of simulation demonstrate the nonlinear coarsening of the wavy deformation of the vesicle in the late stage.Comment: 9 pages, 9 figure
    • …
    corecore