12 research outputs found

    Combining Nitrous Oxide with Carbon Dioxide Decreases the Time to Loss of Consciousness during Euthanasia in Mice — Refinement of Animal Welfare?

    Get PDF
    Carbon dioxide (CO2) is the most commonly used euthanasia agent for rodents despite potentially causing pain and distress. Nitrous oxide is used in man to speed induction of anaesthesia with volatile anaesthetics, via a mechanism referred to as the “second gas” effect. We therefore evaluated the addition of Nitrous Oxide (N2O) to a rising CO2 concentration could be used as a welfare refinement of the euthanasia process in mice, by shortening the duration of conscious exposure to CO2. Firstly, to assess the effect of N2O on the induction of anaesthesia in mice, 12 female C57Bl/6 mice were anaesthetized in a crossover protocol with the following combinations: Isoflurane (5%)+O2 (95%); Isoflurane (5%)+N2O (75%)+O2 (25%) and N2O (75%)+O2 (25%) with a total flow rate of 3l/min (into a 7l induction chamber). The addition of N2O to isoflurane reduced the time to loss of the righting reflex by 17.6%. Secondly, 18 C57Bl/6 and 18 CD1 mice were individually euthanized by gradually filling the induction chamber with either: CO2 (20% of the chamber volume.min−1); CO2+N2O (20 and 60% of the chamber volume.min−1 respectively); or CO2+Nitrogen (N2) (20 and 60% of the chamber volume.min−1). Arterial partial pressure (Pa) of O2 and CO2 were measured as well as blood pH and lactate. When compared to the gradually rising CO2 euthanasia, addition of a high concentration of N2O to CO2 lowered the time to loss of righting reflex by 10.3% (P<0.001), lead to a lower PaO2 (12.55±3.67 mmHg, P<0.001), a higher lactataemia (4.64±1.04 mmol.l−1, P = 0.026), without any behaviour indicative of distress. Nitrous oxide reduces the time of conscious exposure to gradually rising CO2 during euthanasia and hence may reduce the duration of any stress or distress to which mice are exposed during euthanasia

    Inhaled furosemide for relief of air hunger versus sense of breathing effort: a randomized controlled trial

    Get PDF
    Background. Inhaled furosemide offers a potentially novel treatment for dyspnoea, which may reflect modulation of pulmonary stretch receptor feedback to the brain. Specificity of relief is unclear because different neural pathways may account for different components of clinical dyspnoea. Our objective was to evaluate if inhaled furosemide relieves the air hunger component (uncomfortable urge to breathe) but not the sense of breathing work/effort of dyspnoea. Methods. A randomised, double blind, placebo-controlled crossover trial in 16 healthy volunteers studied in a university research laboratory. Each participant received 3 mist inhalations (either 40 mg furosemide or 4 ml saline) separated by 30–60 min on 2 test days. Each participant was randomised to mist order ‘furosemide-saline-furosemide’ (n- = 8) or ‘saline-furosemide-saline’ (n = 8) on both days. One day involved hypercapnic air hunger tests (mean ± SD PCO2 = 50 ± 3.7 mmHg; constrained ventilation = 9 ± 1.5 L/min), the other involved work/effort tests with targeted ventilation (17 ± 3.1 L/min) and external resistive load (20cmH2O/L/s). Primary outcome was ratings of air hunger or work/effort every 15 s on a visual analogue scale. During saline inhalations, 1.5 mg furosemide was infused intravenously to match the expected systemic absorption from the lungs when furosemide is inhaled. Corresponding infusions of saline during furosemide inhalations maintained procedural blinding. Average visual analogue scale ratings (%full scale) during the last minute of air hunger or work/effort stimuli were analysed using Linear Mixed Methods. Results. Data from all 16 participants were analysed. Inhaled furosemide relative to inhaled saline significantly improved visual analogues scale ratings of air hunger (Least Squares Mean ± SE − 9.7 ± 2%; p = 0.0015) but not work/effort (+ 1.6 ± 2%; p = 0.903). There were no significant adverse events. Conclusions. Inhaled furosemide was effective at relieving laboratory induced air hunger but not work/effort in healthy adults; this is consistent with the notion that modulation of pulmonary stretch receptor feedback by inhaled furosemide leads to dyspnoea relief that is specific to air hunger, the most unpleasant quality of dyspnoea

    Neuroergonomic and psychometric evaluation of full-face crew oxygen masks respiratory tolerance: a proof-of-concept study

    No full text
    Introduction Preventing in-flight hypoxia in pilots is typically achieved by wearing oxygen masks. These masks must be as comfortable as possible to allow prolonged and repeated use. The consequences of mask-induced facial contact pressure have been extensively studied, but little is known about mask-induced breathing discomfort. Because breathlessness is a strong distractor and engages cerebral resources, it could negatively impact flying performances. Methods Seventeen volunteers (age 20–32) rated respiratory discomfort while breathing with no mask and with two models of quick-donning full-face crew oxygen masks with regulators (mask A, mask B). Electroencepha- lographic recordings were performed to detect a putative respiratory-related cortical activation in response to inspir- atory constraint (experiment 1, n=10). Oxygen consump- tion was measured using indirect calorimetry (experiment 2, n=10). results With mask B, mild respiratory discomfort was reported significantly more frequently than with no mask or mask A (experiment 1: median respiratory discomfort on visual analogue scale 0.9 cm (0.5–1.4), experiment 1; experiment 2: 2 cm (1.7–2.9)). Respiratory-related cortical activation was present in 1/10 subjects with no mask, 1/10 with mask A and 6/10 with mask B (signifi- cantly more frequently with mask B). Breathing pattern, sigh frequency and oxygen consumption were not different. Conclusions In a laboratory setting, breathing through high-end aeronautical full-face crew oxygen masks can induce mild breathing discomfort and activate respirato- ry-related cortical networks. Whether or not this can occur in real-life conditions and have operational consequences remains to be investigated. Meanwhile, respiratory psychometric and neuroergonomic approaches could be worth integrating to masks development and evaluation processes

    Multidisciplinary care allowing uneventful vaginal delivery in a woman with Pompe disease

    No full text
    Pregnancy and delivery are challenging in women affected by Pompe disease with respiratory involvement. We describe a 28-year-old woman, who continued to receive enzyme replacement therapy during pregnancy and had an uneventful vaginal birth. Before pregnancy the patient's vital capacity was 52% in sitting position and 51% in supine position. At 32 weeks gestation her vital capacity in sitting position was 46% and 35% in supine position. Nocturnal non-invasive mechanical ventilation was introduced at this time. Labor was induced at 34 weeks following premature rupture of membranes, under epidural anesthesia. A 2590 g healthy baby was delivered by vacuum extraction. Assisted ventilation was continued throughout labor and post-partum. This observation suggests a successful pregnancy and a normal vaginal delivery can be achieved in patients with symptomatic Pompe Disease, provided multidisciplinary care is offered
    corecore