25 research outputs found

    Intrauterine low protein diet increases fetal beta-cell sensitivity to NO and IL-1 beta: the protective role of taurine.

    No full text
    We have demonstrated earlier that a low-protein (8% protein) diet during gestation alters fetal beta-cell development. Here, we investigated the effect of a low-protein diet as compared with a control (20% protein) diet, during gestation, on the sensitivity of fetal beta-cells against nitric oxide (NO) or interleukin-1 beta (IL-1 beta), and assessed the protective effect of taurine in vitro and in vivo. Neoformed islets from control fetuses or fetuses of dams fed a low-protein diet (LP group) were incubated with taurine, methionine or beta-alanine and then exposed to sodium nitropruside (SNP), a NO donor, or to IL-1 beta. To understand the effect of taurine in vivo, LP or control pregnant rats received 2.5% of taurine in the drinking water. Mortality and rate of apoptosis were quantified by confocal microscopy. Without treatment, rate of apoptosis was greater in LP group islets than in control islets (1.38+/-0.18% compared with 0.66+/-0.21% respectively, P<0.05). Addition of SNP 100 microM showed an augmentation in cell death, which was greater in the LP than in the control group (17.88+/-0.69% compared with 11.89+/-0.44% respectively, P<0.01). LP islets were more sensitive than control islets to IL-1 beta. Taurine was protective against SNP and IL-1 beta in both the groups, methionine provided a less protective effect than taurine, and pretreatment with beta-alanine had no protective effect. Taurine supplementation of the maternal diet reduced the rate of apoptosis induced by IL-1 beta in control islets and suppressed that induced by IL-1 beta in LP islets. Our findings indicate that a low-protein diet during gestation augments the sensitivity of fetal islet cells to NO and IL-1 beta. However, through in vitro and in vivo experiments our studies indicate that such effects can be rescued using amino acids such as taurine

    Inhibition of Histone Deacetylases Induces Bovine Leukemia Virus Expression In Vitro and In Vivo

    No full text
    Packaging into nucleosomes results in a global transcriptional repression as a consequence of exclusion of sequence-specific factors. This inhibition can be relieved by using inhibitors of histone deacetylases, acetylation being a major characteristic of transcriptionally active chromatin. Paradoxically, the expression of only ∼2% of the total cellular genes is modulated by histone hyperacetylation. To unravel the potential role of this transcriptional control on BLV expression, we tested the effect of two highly specific inhibitors of deacetylases, trichostatin A (TSA) and trapoxin (TPX). Our results demonstrate that treatment with TSA efficiently enhanced long terminal repeat-directed gene expression of integrated reporter constructs in heterologous D17 stable cell lines. To further examine the biological relevance of these observations made in vitro, we analyzed ex vivo-isolated peripheral blood mononuclear cells (PBMCs) from bovine leukemia virus (BLV)-infected sheep. TSA deacetylase inhibitor induced a drastic increase in viral expression at levels comparable to those induced by treatment with phorbol-12-myristate 13-acetate and ionomycin, the most efficient activators of BLV expression known to date. TSA acted directly on BLV-infected B lymphocytes to increase viral expression and does not seem to require T-cell cooperation. Inhibition of deacetylation after treatment with TSA or TPX also significantly increased viral expression in PBMCs from cattle, the natural host for BLV. Together, our results show that BLV gene expression is, like that of a very small fraction of cellular genes, also regulated by deacetylation

    Glucose-induced mixed [Ca2+]c oscillations in mouse beta-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum

    No full text
    Stimulatory concentrations of glucose induce two patterns of cytosolic Ca2+ concentration ([Ca2+]c) oscillations in mouse islets: simple or mixed. In the mixed pattern, rapid oscillations are superimposed on slow ones. In the present study, we examined the role of the membrane potential in the mixed pattern and the impact of this pattern on insulin release. Simultaneous measurement of [Ca2+]c and insulin release from single islets revealed that mixed [Ca2+]c oscillations triggered synchronous oscillations of insulin secretion. Simultaneous recordings of membrane potential in a single beta-cell within an islet and of [Ca2+]c in the whole islet demonstrated that the mixed pattern resulted from compound bursting (i.e., clusters of membrane potential oscillations separated by prolonged silent intervals) that was synchronized in most beta-cells of the islet. Each slow [Ca2+]c increase during mixed oscillations was due to a progressive summation of rapid oscillations. Digital image analysis confirmed the good synchrony between subregions of an islet. By contrast, islets from sarco(endo)plasmic reticulum Ca2+-ATPase isoform 3 (SERCA3)-knockout mice did not display typical mixed [Ca2+]c oscillations in response to glucose. This results from a lack of progressive summation of rapid oscillations and from altered spontaneous electrical activity, i.e., lack of compound bursting, and membrane potential oscillations characterized by lower-frequency but larger-depolarization phases than observed in SERCA3+/+ beta-cells. We conclude that glucose-induced mixed [Ca2+]c oscillations result from compound bursting in all beta-cells of the islet. Disruption of SERCA3 abolishes mixed [Ca2+]c oscillations and augments beta-cell depolarization. This latter observation indicates that the endoplasmic reticulum participates in the control of the beta-cell membrane potential during glucose stimulation
    corecore